SOFTWARE ACQUISITION

BEsST PRACTICES INITIATIVE

1))
[11]
0)
x5
W o
0 o
< g
Z o,
<<
5
> 1L
20 Z
4
Ok
SFm
n.'g:
w2o
DU
O <

This publication was prepared for the

Software Program Managers Network
4600 North Fairfax Drive, Suite 302
Arlington, VA 22203

The ideas and findings in this publication should not be
construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

Mo Bpan

Norm Brown
Director, Software Program Managers Network

Copyright © 1998 by Computers & Concepts Associates

This work was created by Computers & Concepts Associates in
the performance of Space and Naval Warfare Systems Command
(SPAWAR) Contract Number N00039-94-C-0153 for the
operation of the Software Program Managers

Network (SPMN).

THE PROGRAM MANAGER’S

GUIDE TO

SOFTWARE ACQUISITION
BEST PRACTICES

e

PREFACE

The Department of Defense and its
contractors have arrived at a software
crisis. Far too many large-scale software
projects have become unaffordable and
unable to deliver needed quality,
reliability, and capability within the
required time frame. Their outputs are
not predictable. Their processes are little
more than chaotic and do not effectively
utilize the kinds of disciplines necessary
to achieve success. They have not yet
taken advantage of the kinds of practices
used to effectively manage large-scale
hardware projects.

The Software Acquisition Best Practices
Initiative was established to bring about
substantial improvements in productivity,
quality, timeliness, and user satisfaction
by implementing Best Practices as a new
foundation for DoD software
management. T'wo of the Initiative’
purposes are: focusing the Defense
acquisition community on employing
effective high-leverage software
acquisition management practices; and
enabling managers to exercise flexibility
in implementing practices within
disparate program cultures. Intended for
both government software program
managers and their industry counterparts,
this book is a primary component of the
Initiative and has been structured to
support both these purposes.

Solutions are taken from successful
programs—practices which when

effectively implemented, given competent

staff, will help bring order, predictability,
and higher levels of productivity and
quality. Each practice includes key
applicability factors, enabling adaptation
to particular situations and environments.
In addition, the Software Program
Managers Network is preparing more
detailed information and implementation

examples.

These practices are focused upon
effective management processes,
techniques for finding defects as they
occur, eliminating excessive and
unnecessary costs, increasing productivity,
and other beneficial effects. The Airlie
Software Council—nineteen industry
leaders, authors, and visionaries—and
other industry experts and consultants are
convinced that projects effectively
utilizing the Principal Best Practices and
other appropriate Best Practices will
achieve significant cost reductions while
simultaneously increasing quality and
reliability.

The Airlie Software Council believes the
nine Principal Best Practices are
applicable to all large-scale projects (i.e.,
projects relying on the full-time efforts of
twelve or more people annually). The
Best Practices should be used as
appropriate according to the particular
circumstances and environment of a given
project. All practices are generally
applicable to both government and
industry projects, and to nearly all
domains.

These practices have been through a thorough
review and comment process. Both the initial set of
Candidate Practices and the later set of Draft
Practices were widely distributed for comment.
They have been provided to DoD Program
Executive Offices, Warfare Centers, industry
associations, government and industry participants,
and to anyone requesting them as a result of the
several best practice presentations at Tri-Ada, the
Software Technology Conference, and elsewhere.
They have also been made available on the
Network’s World Wide Web site. As a result, we
have received many useful comments. Nearly all
recommendations for more clearly articulating a
given practice were incorporated. Other
recommendations included: conducting additional
studies; gathering and including additional
information that supports or relates to each practice;
providing exact directions on practice use for
different program sizes or phase; and suggested
major restructuring. These recommendations have
all been carefully considered and included in
planning for future improvement of this book. The
practices herein are a “living set,” and are intended
to be refined over time. We would greatly
appreciate receiving your comments and suggestions
(preferably by e-mail). In the event that a program
manager desires additional information, the
Network will provide source materials and access to

experts.

These practices are termed “Best Practices” not
because they have been intensively studied and
analytically proven to be “best,” but simply because
they are practices used by, and considered critical to,
successful software projects. This is not presumed
to be an exhaustive set, or to say that there may not

be other, perhaps even better, practices; however, the
practices presented here will go a long way to
engendering successful software development and
maintenance.

This book has been produced by the Initiative under
the leadership and funding of the Software Program
Managers Network, and was made possible only
through the dedicated efforts of some 190
concerned, committed, and experienced software
managers, practitioners, leaders, and experts in
industry and government that comprised the seven
Issue Panels, the Program Managers Panel, and the
Airlie Software Council (listed in Appendix D).

The nation’s software industry owes a debt of
gratitude to Noel Longuemare, Principal Deputy
Under Secretary of Defense (A&T), and Emmett
Paige Jr., Assistant Secretary of Defense (C31I), for
establishing the Initiative and for their commitment
to implementing major improvements in software
development and maintenance of large-scale
software systems. Special thanks are also due to
Gene Porter, formerly DoD’s Director of
Acquisition Program Integration, for focusing the
DoD acquisition community on the need for
identification and effective use of software
acquisition Best Practices.

Norm Brown
Coordinator,

Software Acquisition Best
Practices Initiative

CONTENTS

INTRODUCTION TO
SOFTWARE ACQUISITION BEST PRACTICES I

(H A P T E R 1
PROJECT CONTROL PANEL v v v i i ii . 1
(H A P T E R 3
PROJECT ANALYZER. . . . « v v v v vt e i i e i d e e e 7
(H A p T E R 4
QUANTITATIVE TARGETS v v v v v i i e i e e 25
(H A P T E R 5
PRINCIPAL BEST PRACTICES « v v v v v v it i e 33
(H A P T E R 6
BEST PRACTICES v v v i v v i e i it d s s s 49
(H A P T E R 1
PROJECT CAVEATS o v v v e it i et i st s 105

CONTENTS

A P P E N D | X A
BEST PRACTICES INITIATIVE BACKGROUND 18
A P P E N D | X B
BEST PRACTICES CONTRACTING DOCUMENTATION. [20
A P P E N D | X (
PROJECT CONTROL PANEL “ABBA CHART” (GAUGE 6) ... |11
A p P E N D | X D
BEST PRACTICES INITIATIVE CONTRIBUTORS 124
B | B L | 0 G R A P H Y L 131
[N D E PR 137

THE PROGRAM MANAGER’S
GUIDE TO
SOFTWARE ACQUISITION
BEST PRACTICES

e

CHAPTER 1

INTRODUCTION TO SOFTWARE
ACQUISITION BEST PRACTICES

INTRODUCTION TO SOFTWARE ACQUISITION

PROGRAM MANAGEMENT

You know the problems. Headlines
proclaim them: big cost overruns,
schedule slips, and dramatic
performance deficiencies in weapon,
C4l1, and automated information
systems—virtually all due to software
problems. In 1987, the Defense
Science Board concluded that these
software acquisition problems came not
from technical difficulties, but from
poor management. Since 1987, the
situation has gotten worse, not better.
Software has gotten bigger, more
complex, and more expensive, and
ineffective management is still the root
cause of much that afflicts software

acquisition.

Nowhere is successful software
program management more critical
than in the Department of Defense.
The Assistant Secretary of Defense for
Command, Control, Communications
and Intelligence estimates annual DoD
software maintenance and development
expenditures to be $42 billion. Anyone
associated with government large-scale
software program management knows
how rarely a clear program success
occurs.

This book provides winning strategies
used by successful government and
industry software program managers—
practices and tools that, if utilized, will
enable the effective management of
large-scale software programs. In the
following chapters, six key components

of successful management are
examined:

* The PROJECT CONTROL
PANEL displays project progress
indications and warnings to help
gauge how well the project is
running.

The PROJECT ANALYZER
consists of diagnostic questions
about project status, and helps
determine whether further
evaluation is called for.

QUANTITATIVE TARGETS
provide hard numbers for
production goals, and warnings of

possible project malpractice.

PRINCIPAL BEST PRACTICES
are essential to successfully manage
software development and
maintenance projects in industry
and government.

BEST PRACTICES have been

used successfully in industry and
government software programs,
and are recommended for

consideration.

PROJECT CAVEATS are hard-
learned lessons from industry and
government software project

experience.

In order for the software program
manager to maintain control over
ever-changing program conditions,

continuing status inputs must be received from every
key project element. Just as a pilot would not
become airborne without instruments to monitor
essential aircraft functions, a program manager
should not attempt to manage without effective tools
to monitor and control program progress. Effective
management of software development and
maintenance requires close attention to the latest
information on major project issues affecting the
bottom line—productivity, quality, timeliness, and

user satisfaction.

A conceptual framework of software acquisition

management is given in Figure 1.1.

INTRODUCTION TO SOFTWARE ACQUISITION
PROGRAM MANAGEMENT

LR B

ORI,

n
TP T,

TR BRRONG)
Tk IR

TR LRI

RN
R

FIGURE 1.1 SOFTWARE ACQUISITION PROGRAM MANAGEMENT ENVIRONMENT

CHAPTER 2

PROJECT CONTROL PANEL

(HAPTER 2

PROJECT CONTROL PANEL

The Project Control Panel is both a
concept and a tool for visualizing and
monitoring the condition of a project
and predicting its future course. The
Panel facilitates the entire project team’s
quick determination of the status of their
project, and identification of areas for
improvement. The Control Panel was
designed to help project managers keep
their projects on course when data for
the Control Panel is updated regularly.
When gauges are not in acceptable
ranges, they indicate to management that
potential trouble lies ahead. The
Control Panel displays information on
progress, that including: productivity and
completion, change, staff, risk, and
quality. These criteria were chosen to
cover the primary areas that every
project manager needs to track in order
to avoid failure on large-scale software
development projects.

of

- Preanmss
RO, 0 ’ , PRODUCT
511998 & 171998
REEPDRTIMG FEREIOD
RO l._::::
EAFRFED YWALLUE
[BT
5 MILONG i I Cast To-Co i phebe
3 o 'II:'I Faerfo rrnd noe FarFo rong noe
Irdex [CFI) Inde s [TCFI)
BAC :
- , e Cos LA
[ATWF)
st [14
[3 F ! TTALDLE
A S S |14
sunewve 3]
ELAF SED T IWLE COMFLETED OH TINE Ijl
o S]
— | 8]
& o 12
L k' Tazk srarusThis Fericd

1, L BTarr o

REIZ K KEEZERYE

5 a0 s
.0
7.5
10
Configurakon Managensent Fwquire mentz Changs il n B ey Tur rever e firn g How
. Churn FerMonth (4 P r Mo nbh (45 y Far Mo nth (45 Farionth [
- RAEK B P OEITE m
» Prezee [esrccur:
i) :
I
E : M Iri Y
. iGF no
- * y ,E Frobkm ah
unm
Trbamlitr L

FIGURE 2.1 PROJECT CONTROL PANEL

""I
:—
2 2
| b [T
L
LA
(T}
TIME .
Tohal Frogram Ferformance Effsiensy
@ualibr @ak h
-
o
£
) : g
*M
T -
h
Tazksoomphkhed y,

r

| QUALITY g
|:| =1 %} - Claxsd

P EFECTS

Fq . Darigr Coda Tanr

Wy o U 5

annsl
¢ 30 Prad

I:|rr.ing FAN

Dafas b by s bty

Cumulative Earned Valve
delivered (BCWP) compared
with total budgeted cost
(BAC) and cumulative
planned value (BCWS).

p Cumulative actual cost (ACWP)
compared with total estimated cost at
completion (EAQ).

Current reporting time
period compared with total
periods budgeted.

_ Bawp
p ®l= howp

_ BAC-BQWP
P o EAC—- ACWP

Total program performance
efficiency chart.

Number of tasks due,
completed on fime, completed
late, and total overdue tasks
lust month.

Cumulative number of tasks planned and
completed over fime.

of modified Cls rechecked
into CM last month

of Cls in CM system

E) # of new and changed
requirements last month

of original requirements

D # of staff voluntarily
leaving last month

of staff at beginning of month

100

100

of overtime hours lust month 100
of base hours

Each risk plotted in regions of high-,
moderate-, and low-risk exposure.

Risk reserve dollars:
Total cost risk exposures
compared with cost risk reserve.

Risk reserve time:
Total schedule risk exposures compared
with schedule risk reserve.

b Metrics Problem — project metrics
warning indicator

Anonymous channel warnings — bad
news from staff.

p Total # of severity 1 & 2
defects that are open and dosed.

PROJECT CONTROL PANEL

PROGRESS:

p

The EARNED VALUE or Budgeted
Cost of Work Performed
(BCWP) gauge shows the
cumulative Earned Value delivered
to date. The cumulative Earned
Value indicator shows the amount
of work that has been completed
on the project. This metric is
based on the notion that, at the
beginning of a project, every task
is allocated a budget which then
becomes its planned value. As
work is completed on a task, its
budget (or planned value) is
“earned” as a quantitative measure
of progress. The maximum value
on the gauge is the total original
budget for the project, which is
known as Budget at Completion
(BAC). Note that BAC is
constant for the life of the project,
and represents the total value of
work to be performed. The
triangle indicator shows the
cumulative planned value or
Budgeted Cost of Work
Scheduled (BCWS), which is the
total value of work that was
originally scheduled for
completion by the end of this
reporting period.

The cumulative Earned Value
(BCWP), cumulative planned

p

value (BCWS), and BAC
indicators can be compared with
one another to make critical
observations about progress on the
project. By comparing the BCWP
indicator with the BCWS
indicator, you can determine if the
project is ahead of or behind
schedule. This is a good measure
of schedule deviation because it
takes into account the amount of
work that was planned to be
completed.

Establishing a planned value and a
completion criterion for each task
before work begins is critical for
using the Earned Value metric
successfully to measure progress.
Cumulative Earned Value is the
sum of the planned values for all
completed tasks. The best
completion criteria for a sofrwar
task will require that no planned
value credit can be taken until all
work is completed and tested.
These completion criteriear

known asquality gates.

The AcTuAL COST or Actual
Cost of Work Performed
(ACWP) gauge shows the
cumulative actual cost incurred on
the project to date. Estimate at
Completion (EAC) is the

maximum value on this gauge,

which represents the current best estimate for
total cost of the project. Note that EAC
might have a different value from BAC in the
above Earned Value gauge because better
total cost estimates can be made as the
project progresses. Therefore EAC may
change for different reporting periods.

By comparing cumulative actual cost (ACWP)
with the cumulative Earned Value (BCWP) in
the above Earned Value gauge, you can

estimate how your project is performing against

its budget. This shows bow well the project is
turning actual costs (ACWP) into progress
BCWP). Although the scales for this gauge
and the Earned Value gauge arve the same,
cumulative actual cost can be compared with
BAC to determine project status toward e ver
running the oviginal budget, and with EAC to
determine project status toward omenning

the curent estimated total cost.

The ELAPSED TIME gauge shows the end date
for the current reporting period. The SAC
(Schedule at Completion) mark shows the
original scheduled completion date for the
project.

Cument time can be compared with SAC to
determine the time remaining in the original

schedule.

The Cost PERFORMANCE INDEX (CPI) gauge
shows how efficiently the project team has
turned costs into progress to date. Itis
calculated by dividing cumulative Earned Value
by the cumulative actual cost (BCWP/ACWP).
It is a historical measure of average productivity
over the life of the project.

CPI represents how much work was performed
foreach dollar spent, or “bang for the buck.”
When CPI has a value of 1.0, the project team
is delivering a dollar of planned work for each
dollar of cost. When CPI is less than 1.0, ¢her
is the potential for a productivity problem. For
example, a CPI of .80 means that you received
80 cents’ worth of planned work for each dollar
you paid in cost. A CPI of less than 1.0 may
indicate that the project team didn’t perform as
well as expected, or that the original budget was
too aggressive for the amount of work to be
performed.

The To-COMPLETE PERFORMANCE INDEX
(TCPI) gauge shows the future projection of
the average productivity needed to complete
the project within an estimated budget. Itis
calculated by dividing the work remaining by
the current estimate of remaining cost

((BAC - BCWP)/(EAC - ACWP)).

The TCPI gauge must be used in conjunction
with the CPI gauge. TCPI should be compared
with CPI to determine how realistic the most
recent estimated total cost (EAC) is for the
project. Note that CPI measures the average
bistoric productivity to date. If TCPI is greater
than CPI, then the project team is anticipating
an efficiency improvement to make it mor
productive. The estimated total cost of the
project (EAC) can therefore be calibrated by
comparing TCPI with CPI. Always question
claims of future productivity improvement that
result in a 20 percent or greater incredse in
TCPI over CPI in order to ensure they ar
based om sound reasoning. This is especially
true of “silver bullets” like new tools, languages,

or methodologies that may actually decrease

11

PROJECT CONTROL PANEL

>

P

productivity due to training and

start-up costs. The redline on this

gauge should be about 20 percent
above the cument value of the CPI

gauge to show the relationship and

warning level between the two

gauges.

The ABBA' CHART, also known as
a Total Program Performance
Efficiency chart, is composed of
four different performance
indicators showing trends in
historic and projected efficiency to
date. The four indicators are:

¢ TCPI (Gauge 5)

* Completion Efficiency (CE), a
ratio calculated by dividing BAC
by EAC to estimate the
productivity required to
complete the project within a
projected total cost (EAC)

¢ CPI (Gauge 4)

* Monthly CPI, a ratio calculated
by dividing the monthly Earned
Value by the monthly actual cost
(as opposed to cumulative values
for the CPI calculation)

A more detailed description of this
chart is presented in Appendix C.

QuAulTY GATE TASK STATUS THIS
MoNTH shows the completion
status of tasks during the current
reporting period. A quality gate is
a predefined completion criterion

' Named for Wayne Abba of the

Department of Defense.

for a task. The criterion must be
an objective yes/no indicator that
shows a task has been completed
(see discussion on Gauge 1 above).
The indicators are:

* Total Due is the total number
of tasks scheduled for
completion during the current
reporting period plus any
overdue tasks from previous
periods. This indicates the total
quantity of work required for
the project to keep pace with
the schedule.

Completed On Time is the

number of tasks originally
scheduled for completion
during the current reporting
period that were completed by
their original scheduled due
date. This number indicates
how well the project is keeping
up with scheduled work.

¢ Completed Late is the number
of tasks completed late during
the current reporting period.
"This number includes those
tasks scheduled for the current
period that were completed late,
as well as any overdue tasks
from previous periods that were
completed in the current period.
The Completed Late number
indicates how well the project is
completing work, even if it is
late according to the original
schedule.

* Total Overdue is the total number of tasks
for all previous reporting periods that are
overdue by the end of the current reporting
period. This is an indicator of the quantity
of work needed to get the project back on
schedule.

The total number of tasks completed in the
cument reporting period is the sum of

Completed On Time and Completed Late.
Total Overdue is equal to Total Due minus
Completed On Time and Completed Late.

The QuUALITY GATE TASKS COMPLETED graph b
shows the cumulative number of tasks

completed by the end of each reporting
period to date plotted with the cumulative

number of tasks scheduled for completion.

When the number of tasks completed is less than
the number planned, then the bhorizontal

difference on the time axis is an indicator of the .
55

cument schedule slip to date.

CHANGE:

p

CM (CONFIGURATION MANAGEMENT) CHURN
PER MONTH is calculated by taking the
number of baselined Configuration Items (CIs)
that have been modified and rechecked into
the Configuration Management system over
the last reporting period and dividing it by the
total number of baselined CIs in the system at
the end of the period. It is expressed as a
percentage. A modified CI is one that was
previously in the system, but was reviewed
sometime later and then modified or replaced.

A,

This gauge serves as an indicator of the
architectural soundness of the system. If the
rate of “churn” begins to approach the
2-percent-per-month level, this shows that a lot
of rework is going on, which could point to
deeper problems in the project. A bhigh vhur
rate may mean that the original design was not
robust enough. It could also be a symptom of
changing requirements (see Gauge 10), which
could indicate the project is drifting towards
disaster

REQUIREMENTS CHANGE PER MONTH is
calculated by dividing the number of new,
changed, or deleted requirements specified in
the current reporting period by the total
number of requirements at the end of the
current period. Itis expressed as a
percentage. Typical projects experience a
requirements change of 1 percent per month.

Some requirements growth is to be expected,
particularly on large projects. However, a high
rate of requirements change can indicate the
customer is mot sure of what is wanted, or the
original requirements definition was poor. A
bigh rate often predicts disaster for so ftware-
intensive projects.

STAFF:

g

VOLUNTARY TURNOVER PER MONTH is
calculated by dividing the number of staff
leaving during the current reporting period by
the number of staff at the beginning of the
current period. It is expressed as a
percentage. The target range is less than 2

PROJECT CONTROL PANEL

B>

percent per month. A person can
leave the project in a number of
ways, such as by quitting the
organization or requesting
reassignment to another project.

Turnover is an important measer
for risk assessment. Every project
lasting six months or longer should

expect and prepare for some fiaf

turnover. Each project member who
leaves the team causes a productivity

drop and schedule disruption.
However, bringing on new team
members, regardless of skills and

experience, does not necessarily solve

the problem; they require time to
become familiar with the project
and processes. In addition, a
productive team member will

usually have to devote time to orient

the new hire, thus taking away
additional resources from the
project. Appropriate allowances
should be included in the
productivity resource estimates to
allow for staff turnover

OVERTIME PER MONTH is
calculated by dividing the overtime
hours by the base working hours
for all project staff in the current
reporting period. It is expressed as
a percentage. The target range is
less than 10 percent. When the
overtime rate approaches 20
percent, the ability of the staff to

respond effectively to crises suffers

significantly.

The Risk EXPOSURE chart shows
each risk plotted by its cost
consequence and probability. The
probability is expressed in terms of
occurrences over the life of the
project. The regions on the graph
show where risks fall into areas of
low-, moderate-, or high-risk

exposure.

Risk RESERVE shows the total risk
exposure for cost and schedule
compared with the current cost
and time risk reserves for the
project. Risk exposure for a risk is
calculated by multiplying the
probability by the consequence of
that risk. Although the
consequences (and therefore the
risk exposure) for all risks are not
necessarily independent, a first
approximation to the total cost risk
exposure to the project can be
made by summing the individual
cost risk exposures for all risks.
This same rule holds true for
consequences resulting in a

delayed schedule.

A cost and risk reserve should be
established at the beginning of the

project to deal with unforeseen

problems. The cost and time risk reserve fora
project will change over time as some of this
reserve is used to mitigate the effects of visks
that actually occur and affect the project.

b The MeTRICS PROBLEM indicator shows that

project management has received either a
warning or bad news about some of the metrics
on the project.

The ANONYMOUS CHANNEL UNRESOLVED
WARNING indicator shows that project
management has received either a warning or
bad news about the actual status of the
project.

An open-project culture in which reporting bad
news is encouraged is conducive to a healthy

project. Warnings from anonymous or known
project personnel should be welcomed and
tracked.

QUALITY:

b Derects BY AcCTIVITY displays the number of
detected defects open (i.e., yet to be fixed) and
the number of defects closed in each phase of
the project. Defects are problems that, if not
removed, could cause a program to fail or
produce incorrect results. Defects are
generally prioritized by severity level, with
those labeled as numeral 1 being the most
serious.

The quality indicators on this chart help you
answer the question, “What is the quality of the

product right now?”

CHAPTER 3

PROJECT ANALYZER

PROJECT ANALYZER

The Project Analyzer questions provide program managers with a “quick look” at

software project health. The Project Analyzer determines whether key program

elements exist, without which the program is not likely to succeed. If a program

manager cannot answer the following questions about current project status, or must

answer in the negative, the project should be scheduled for immediate review.

Do you have a current,
credible activity network
supported by a Work
Breakdown Structure (WBS)?

Do you have a current,
credible schedule and budget?

Do you know what software
you are responsible for
delivering?

Can you list the current top
ten project risks?

Do you know your schedule
compression percentage?

6.

What is the estimated size of
your software deliverable?
How was it derived?

Do you know the percentage
of external interfaces that are
not under your control?

Does your staff have sufficient
expertise in the key project
domains?

Have you identified adequate
staff to allocate to the
scheduled tasks at the
scheduled time?

1. Do you have a current, credible * Does the lowest-level WBS show work
activity network supported by a packages with measurable tasks of short
Work Breakdown Structure (WBS)? duration?

An activity network is the primary means * Are project objectives fully supported by
to organize and allocate work. lower-level objectives?
* Have you identified your critical path items? * Does each task on the network have a well-
o o defined deliverable?
* What explicit provisions have you made for
work that isn’t on your WBS? * Is each work package under budget control
o (expressed in labor hours, dollars, or other
* Does the activity network clearly organize, . .
]) numerical units)?
define, and graphically display the work to
i ?
be accomplished: Awell-constructed activity network is
¢ Does the top-level activity network essential for accurate estimates of project time,
graphically define the program from start to cost, and personnel needs, because estimates
finish, including dependencies? should begin with specific work packages.
Design Code
Walkthrough ~ Walkthrough
Procedural Coding Unit
Design Test
Requirements Preliminary l *
Revi .
eview Eeevs:g\; Validation
Analysis and Architectural —-_-_-_-_-_ Test
Specification and Pqtq Integration
Desin .-

o o

—h—

{

. + RN
* *
. ¢ -
@ = Milestone Test Test Testing ¢
Planning Procedure Review

FIGURE 3.1 AcTivity NETWORK EXAMPLE

PROJECT ANALYZER

2‘

Do you have a current, credible
schedule and budget?

* Is the schedule based on a project/
activity network supported by the
WBS?

* Is the schedule based on realistic
historical and quantitative
performance estimates?

* Does the schedule provide time for
education, holidays, vacations, sick
leave, etc.?

* Does the schedule provide time for

quality assurance activities?

® Does the schedule allow for all

interdependencies?

® Does the schedule account for

resource overlap?

¢ Is the schedule for the next 3-6
months as detailed as possible?

* Is the schedule consistently
updated at all levels on Gantt,
PERT, and Critical Path charts

every two weeks?

* Is the budget clearly based on the
schedule and required resources
over time?

¢ Can you perform to the schedule
and budget?

Do you know what software
you are responsible for
delivering?

* Are system operational
requirements clearly specified?

* Are definitions of what the
software must do to support
system operational requirements
clearly specified?

* Are system interfaces clearly
specified and, if appropriate,
prototyped?

* Is the selection of software
architecture and design method
traceable to system operational

characteristics?

* Are descriptions of the system
environment and relationships of
the software application to the
system architecture specified
clearly?

* Are specific development
requirements expertly defined?

* Are specific acceptance and delivery

requirements expertly defined?

¢ Are user requirements agreed to by
joint teams of developers and users?

* Are system requirements traceable
through the software design?

Can you list the current top
ten project risks?

* Has a full-dme Risk Management
Officer been assigned to the project?

* Are risks determined through established
processes for risk identification, assessment,
and mitigation?

* Is there a database that includes all non-
negligible risks in terms of probability, earliest
expected visible symptom, and estimated and
actual schedule and cost effects?

* Are all project personnel encouraged to
become risk identifiers? Is there an
anonymous communications channel for
transmitting and receiving bad news?

* Are correction plans written, followed up, and
reported?

* Is the database of top ten risks updated
regularly?

¢ Are transfers of all deliverables/products
controlled?

* Are user requirements reasonably stable?
* How are risks changing over time?

Do you know your schedule
compression percentage?

* Has the schedule been constructed bottom up
from quantitative estimates, not by
predetermined end dates?

* Has the schedule been modified when major
software modifications have taken place?

* Have programmers and test personnel
received training in the principal domain area,
the hardware, support software, and tools?

' Software Engineering EconomiPrentice Hall, 1981.

* Have very detailed unit-level and interface
design specifications been created for
maximum parallel programmer effort?

* Does the project avoid extreme dependence
on specific individuals?

* Are people working abnormal hours?

* Do you know the historical schedule
compression percentage on similar projects,
and the results of those projects?

* Is any part of the schedule compression based
on the use of new technologies?

* Has the percent of software functionality
been decreased in proportion to the percent

of schedule compression?

Schedul Calendar
chedule | Time Scheduled
Compression = 4 1.00 -| —————— x 100
Percentage Nomlnal

Expected Time

Nominal Expected Time is a function of total

effort expressed in person months.

For example, Boehm! found that:

For a class of DoD project of 500 person
months or more:

Nominal Expected 0.33
Expected =2.15x | Person
Time Months

Nominal Expected Time was measured
from System Requirements Review to
System Acceptance Test.

PROJECT ANALYZER

55

Attempts to compress aschedule o 7. Do you know the percentage

less than 80 percent of its nominal

" schedule aren’t usually successful.

New technolo gies are an additional
risk in time and cost.

What is the estimated size of
your software deliverable?

How was it derived?

Has the project scope been clearly

established?

Were measurements from

previous projects used as a basis

for size estimates?

Were Source Lines of Code

(SLOC) used as a basis for
estimates?

Were Function Points (FPs) used

as a basis for estimates?

What estimating tools were used?

Are the developers who do the

estimating experienced in the

domain area?

Were estimates of project size

corroborated by estimate

verification?

Are estimates regularly updated to

reflect software development

realities?

So frware size estimation is a process

that should continue as the project

" proceeds.

8.

of external interfaces that
are not under your control?

e Has each external interface been
identified?

* Have critical dependencies of
each external interface been
documented?

* Has each external interface been
ranked based on potential project
impact?

¢ Have procedures been established
to monitor external interfaces
until the risk is eliminated or
substantially reduced?

* Have agreements with the
external interface controlling
organizations been reached and
documented?

Does your staff have
sufficient expertise in the key
project domains?

* Do you know what the user needs,
wants, and expects?

* Does the staffing plan include a
list of the key expertise areas and
estimated number of personnel
needed?

* Does most of the project staff have experience
with the specific type of system (business,
personnel, weapon, etc.) being developed?

* Does most of the project staff have extensive
experience in the software language to be used?

* Are the developers able to proceed without
undue requests for additional time and cost to
help resolve technical problems?

* Do the developers understand their project
role, and are they committed to its success?

* Are the developers knowledgeable in domain
engineering—the process of choosing the best
model for the project and using it throughout
design, code, and test?

® Is there a domain area expert assigned to each
domain?

Have you identified adequate staff to
allocate to the scheduled tasks at the
scheduled time?

* Do you have sufficient staff to support the
tasks identified in the activity network?

¢ Is the staffing plan based on historical data of
level of effort or staff months on similar

projects?

* Do you have adequate staffing for the current
tasks and all the tasks scheduled to occur in
the next two months?

* Have alternative staff buildup approaches
been planned?

* Does the staff buildup rate match the rate at
which the project leaders identify unsolved

problems?

* Is there sufficient range and coverage of skills
on the project?

¢ Is there adequate time allocated for staff
vacations, sick leave, training, and education?

* Are staffing plans regularly updated to reflect
reality?

CHAPTER 4

QUANTITATIVE TARGETS

QUANTITATIVE TARGETS

Quantitative targets apply to key project areas being measured, providing best-in-class
objectives for DoD-contracted software projects. The targets and their associated

warning levels of possible malpractice are:

- Original Defect Density and Defect - ’lotal Requirements Growth
Removal Efficiency - Total Software Program

- Slip or Cost Overrun in Excess Documentation
of Risk Reserve

- Voluntary Staff Turnover Per Year

Si1ZzE METRIC ALTERNATIVES basic measurements of software size and
complexity. The following enables
Both Source Lines of Code (SLOC) and SLOC to be converted to FPs, and

Function Points (FPs) can be used as vice versa:

A A Low MEeAN HicH
Assembly language 200 320 450
C 60 128 170
C++ 20 29 65
Jovial 75 106 160
CMS-2Y 75 106 160
ALGOL, CHILL, COBOL, FORTRAN 75 106 160
Pascal 50 91 125
RPG, PL/I 50 80 115
Modula 2 Ada 70 80 90
Prolog, LISP, Forth, BASIC 35 64 90
Logo 53
Fourth generation database ---- 40
Stratagem 35
APL ---- 32 ----
Objective-C 17 26 38
SmallTalk 12 21 30
Query languages 16
Spreadsheet languages 3 6 9

FIGURE 4.1 SLOC-10-FUNCTION-POINT CONVERSION TABLE
Reprinted from Applied Software Measurement, Capers Jones, McGraw-Hill, 1991.

LEVEL

Defect Removal Efficiency >95% <85%
Original Defect Density <4 Per >/ Per
Function Point Function Point

Metrics can provide valuable insight into a software ¢ Walkthroughs
development process and are also valuable for ¢ Inspections
process improvement. ¢ Editing
A DEFECT is a “bug” or problem which, if not In order to calculate defect removal efficiency,
removed, could cause a computer program to either defect totals are tracked from requirements
fail or produce incorrect results. specification through system delivery and into the

) first year of being fielded.
DEFECT REMOVAL EFFICIENCY is the aggregate

of all defects removed by all means, to include: REMOVAL _ PRERELEASE DEFECTS

EFFICIENCY PRERELEASE DEFECTS + ONE
YEAR OF REPORTED DEFECTS

* Desk checking

® Reviews

DEFECT DEFECT ReEmovaL
ORIGINS POTENTIAL EFFICIENCY DELIVERED
Requirements 1.00 77% 0.23
Design 1.25 85% 0.19
Coding 1.75 95% 0.09
Document 0.60 80% 0.12
Bad Fixes 0.40 70% 0.12

FIGURE 4.2 DEFecT REMOVAL EFFICIENCY FOR SELECTED DEFECT REMOVAL ACTIVITIES
Reprinted from Applied Software Measurement, Capers Jones, McGraw-Hill, 1991.

Techniques and technologies used to minimize or * Use of Joint Application Design (JAD)
prevent the risk of human error by software techniques, including intensive team-based
engineering staff include: analysis, design, and development sessions

* Formal quality plans * Prototyping

QUANTITATIVE TARGETS

* Reusable designs and code from
certified sources

* Software quality assurance teams
¢ Total quality management methods

* Reviews, walkthroughs, and

inspections

* Use of appropriate automated defect
estimation and measurement tools

MEASUREMENT

e Lend]

¢ Clean Room development methods
—a model using statistical quality
control to engineer software (See
Best Practice “Encourage Clean
Room Techniques,” Chapter 6, for
applicability.)

A dollar spent on defect prevention
has been shown to reduce the costs
asso ciated with fixing defects from

$70.00 to $3.00 per Function Point.

WARNING
TARGET LEVEL

Schedule Slip or Cost in

Excess of Risk Reserve

0% 3 10%

SLIP is the amount of time that a
deliverable or product is late from its

originally scheduled date.

COST OVERRUN refers to projects or
deliverables in which the actual cost
exceeds the estimated or budgeted

amounts.

The SCHEDULE outlines the time and
lists the milestones from requirements
specification to product acceptance.

RISK RESERVE is money and time held
in reserve to be used in the event that
risks occur.

Preventive techniques include using:

* Functional metrics to quantify

estimates and progress toward plans

¢ Commercial-grade software project

estimating tools

¢ Commercial-grade project planning

tools

* A measurement process that includes
lowest-level activity, or inch-pebble,
measurement

Software development schedule slips
and cost ovemnuns tend to increase in
exponential proportion to project size.

Cost overuns occur on more than 50
percent of all software projects that
bhave more than 25,000 Function

Points.

WARNING

MEASUREMENT TARGET LEVEL
Total Requirements Growth £1% 3 50%

(In FP or Equivalent) Per Month Per Year
REQUIREMENTS GROWTH is defined as the ¢ Integrated Product Teams (IPTs) composed of
increase between baselined and current documented clients, technical staff, key support groups, and
requirements. contractor staff
At 1 percent growth per month, system * Prototyping

requirements on a 3-year project will increase
. . * Formal change control processes
baseline requirements by 33 percent.

Unacceptable requirements growth occurs on

more than 70 percent of projects over 1,000

Techniques for establishing a more effective

requirements process include:

Function Points.

* Joint Application Design (JAD) which includes
intensive team-based analysis, design, and

development sessions

WARNING
MEASUREMENT TARGET LEVEL
Total Software Program <1000 Words >2000 Words
Documentation Per FP Per FP
PROGRAM DOCUMENTATION includes all * Using outlines and guidelines for specification
online and hardcopy information supporting the and design documentation

system’s contractual agreement, design, build,)) o
. . * Observing standards for brevity and clarity in
operation, and maintenance.)

paperwork requirements

P k can be reduced by:
APETWOIT cal be feduced oY * Building and using a database specifically for

* Decreasing documentation required by documentation and publication

standards
Fifty-two percent of the total costs of defense

. . . . : .
Decreasing delivery of documentation that systems is attributable to paperwork.

already exists in development files

QUANTITATIVE TARGETS

WARNING

MEASUREMENT TARGET LEVEL

Voluntary Staff

Turnover Per Year 1-3% T 10%
Human continuity is important to * Tough economic conditions
project success. resulting from smaller defense
) budgets
VOLUNTARY STAFF TURNOVER is
a measurement of employees the project ¢ Having undervalued skills and a
wants to keep, but who choose to leave. market for their skill

A small amount of staff turnover is

. * Poor project management
expected on projects that last longer than proj 8

six months. * Inadequate tools

Common reasons why software ¢ Unsatisfactory work conditions,
engineering employees choose to leave location, environment, unreasonable
are: hours, etc.

PLANNED
STAFF TERMINATION | REPLACEMENT| ASSIMILATION
DURATION EFFECT DELAY EFFECT ToTtAL Loss %
(WEEKS) (WEEKS) (WEEKS) (WEEKS) (WEEKS) (WEEKS X 2)
20 2 4 4 10 50
40 2 4 4 10 25
80 4 4 6 14 17
120 4 4 6 14 11

FIGURE 4.3 IMPACT OF STAFF TURNOVER ON PLANNED PROJECT PRODUCTIVITY
Reprinted from Software Costing, Frank Wellman, Prentice Hall, 1992.

CHAPTER 5

PRINCIPAL BEST PRACTICES

(HAPTER

PRINCIPAL BEST PRACTICES

Under the aegis of the Software Program
Managers Network, the Airlie Software
Council of software experts and industry
leaders has identified nine Principal Best
Practices that, if implemented, will
improve software development and
maintenance productivity and quality,
reduce cost, and improve user
satisfaction. These practices, which have
proven successful in industry, are
applicable to nearly all large-scale DoD
software development projects:

1. Formal Risk Management
2. Agreement on Interfaces
3. Formal Inspections

4. Metrics-based Scheduling and
Management

5. Binary Quality Gates at the
Inch-Pebble Level

6. Program-wide Visibility of
Progress vs. Plan

7. Defect Tracking Against Quality
Gates

8. Configuration Management

9. People-Aware Management
Accountability

FORMAL RISK MANAGEMENT

A formal risk management process requires
corporate acceptance of risk as a major
consideration for software program
management, commitment of program
resources, and formal methods for identifying,
monitoring, and managing risk.

PROBLEM ADDRESSED:

All software has risk. The cost of resolving a
risk is usually relatively low early on, but
increases dramatically as the project progresses.

PRACTICE ESSENTIALS:
* Identify risk

* “Decriminalize” risk
¢ Plan for risk

* Formally designate a Risk Officer (a senior
member of the management team responsible
for risk management)

* Include in the budget and schedule a
calculated risk reserve buffer of time, money,
and other key resources to deal with risks that
materialize

* Compile a database for all nonnegligible
risks

¢ Include technical, supportability,
programmatic, cost, and schedule risks

® Prepare a profile for each risk (consisting of
probability and consequence of risk
actualization)

Include risks over full life cycle (not just
during your watch)

* Do not expect to avoid risk actualization

Keep risk resolution and workarounds off the
critical path by identifying and resolving risk
items as early as possible

Provide frequent Risk Status Reports to
program manager that include:

- Top ten risk items
- Number of risk items resolved to date

- Number of new risk items since last
report

- Number of risk items unresolved
- Unresolved risk items on the critical path
- Probable cost for unresolved risk vs. risk
reserve
StATUS CHECKS:
* Has a Risk Officer been appointed?
* Has a risk database been set up?

® Do risk assessments have a clear impact on
program plans and decisions?

¢ Is the frequency and timeliness of risk
assessment updates consistent with decision
updates during the project?

* Are objective criteria used to identify,
evaluate, and manage risks?

* Do information flow patterns and reward

PRINCIPAL BEST PRACTICES

criteria within the organization
support the identification of risk by
all project personnel?

* Are risks identified throughout the
entire life cycle, not just during the
current program manager’s
assignment?

¢ Is there a management reserve for
risk resolution? (See Best Practice
“Establish Management Reserves
for Risk Resolution,” Chapter 6.)

® Is there a risk profile drawn up for
each risk, and is the risk’s
probability of occurrence,
consequences, severity, and delay
regularly updated?

* Does the risk management plan
have explicit provisions to alert
decision makers upon a risk
becoming imminent?

2. AGREEMENT ON INTERFACES

A baseline interface must be agreed
upon before the beginning of
implementation activities, and the
user interface must be made and
maintained as an integral part of the
system specification. For those
projects developing both hardware
and software, a separate software
specification must be written with an
explicit and complete interface
description.

PROBLEM ADDRESSED:

System interfaces generally constitute
essential elements of a system’s
requirements and architecture, but
are not completely controlled by the
developer. Not ensuring that
external interfaces are properly
identified, integrated, and stabilized
early will create the need for
expensive and time-consuming
“fixes” later.

PRACTICE ESSENTIALS:

Recognize that both user interfaces
and external system interfaces are
critical

* Fully identify and baseline the user
interface before beginning
development

¢ Define each input/output data item

¢ Display navigation between
screens as well as screen fields

¢ Include the user interface as part
of system specification

® Use rapid prototyping of a
Graphical User Interface (GUI)
as a tool for the user to define
requirements

¢ For embedded systems, prepare a
separate system specification for
the software

STATUS CHECKS:

Is there a complete census of input/outputs?
Are such inputs/outputs defined down to the
data element level?

Are the interfaces stable?

Have you considered hardware/software, users,
major software component interfaces, etc.?

Have existing and future interfaces been
defined, including consideration of those that
may be required over time?

Does the system specification include a
separate software specification to show the
hardware interfaces?

Are opportunities made available for users to
provide input and review the user interface
descriptions as they develop?

Omnly the prospective operational user can
define/verify user interface owrtness with a high
probability of success (the developer cannot).

For most software, the user interface defines user

requirements from both the user and development

perspectives.

3. STRUCTURED PEER REVIEWS

Peer reviews should be conducted on

requirements, architecture, designs at all levels,

code prior to unit test, and test plans.

PROBLEM ADDRESSED:

Rework to fix defects accounts for between

40 percent and 50 percent of total development
costs. Structured peer reviews typically find 80
percent of defects as they happen (walkthroughs
typically find 60 percent). When effectively
used, structured peer reviews can make an
enormous difference to program cost, schedule,

and quality.

PRACTICE ESSENTIALS:

® Use structured peer reviews starting early in
development to effectively identify
requirements defects

* Have the customer participate in peer reviews

* Use small teams of prepared reviewers with
assigned roles

* Ensure that entry and exit criteria exist for
each review

StAaTUS CHECKS:

* Are peer reviews identified and implemented
to assess the quality of all baselined artifacts
and placed under control before they are
released for project use?

¢ Is the conduct of peer reviews structured, and
are they integrated into the project schedule?

¢ Are procedures, standards, and rules for the
conduct of peer reviews established?

PRINCIPAL BEST PRACTICES

* Are metrics used to gauge the
effectiveness of peer reviews?

® Is there a documented process for
conducting peer reviews?

* Are entrance and exit criteria
established for each peer review?

* Are a significant number of defects
caught as early as possible (prior to
testing at least)?

* Are peer reviews specifically
focused on a narrow set of
objectives, and do they evaluate a
fixed set of data?

* Is there a clear rationale for the
scheduling of peer reviews?

* Are defects from peer reviews
tracked and catalogued?

* Are peer reviews conducted to
assess the quality of all engineering
data products before they are
released for project use?

¢ Is the detailed design reviewable?

4. METRICS-BASED SCHEDULING

AND MANAGEMENT

Cost and schedule estimates should be
based on empirical data. Metrics-
based planning requires early
calculation of size, projection of costs
and schedules from empirical patterns,
and tracking of project status through
the use of captured-result metrics.

PROBLEM ADDRESSED:

The important issue here is to
identify problems emdyI'his is the
primary reason to make sure metrics
are being done right. Your metrics
are the yardstick for measuring
progress against your baseline plan,
and become your warning indicator
for further inquiry and action. Of
course, the earlier the visibility of a
problem, the better the chance of
avoiding the problem or controlling
its negative effect.

PRACTICE ESSENTIALS:

¢ Estimate cost and schedule using
data from completed projects of
similar size and objective

* Compare with cost model estimate

¢ Plan short-duration tasks with
measurable products (see Best
Practice “Activity Planning,”
Chapter 6, and Principal Best
Practice “Binary Quality Gates at
the Inch-Pebble Level,” Chapter 5.)

* Review the following at frequent
intervals throughout the project:

- Earned Value (BCWP) vs.
Actual Expended

- Cost to Complete (including
estimate for unresolved risk) vs.
Planned at Completion

- Schedule to Complete vs.
Planned Schedule

- Cost Performance Index
- To-Complete Performance Index

® Manage defect closure time (see Principal Best
Practice “Defect Tracking Against Quality
Targets,” Chapter 5.)

* Don’t hide problems with rebaselining

¢ Report Earned Value and other progress
measures against original baseline

® Track other Control Panel metrics (see
Chapter 2.)

STATUS CHECKS:

* Are cost and schedule performance tracked
against the initial baseline and the latest baseline?

* Are the number of changes to the initial
cost/schedule baseline tracked?

* Does the plan identify progress measures to
permit rate charting and tracking?

* Are inspection coverage and error removal
rates tracked for the entire product and for
each component?

* Are project estimates continuously refined as
the project proceeds?

¢ Is a project feedback loop established between
project measures and updated schedules?

* Is there a process for capturing the primitive
data necessary to calculate Earned Value?

* Are productivity levels and schedule deadlines
evaluated against past performance and
reflected in the risk assessment?

* Are the planned vs. actual cost and planned vs.
actual schedule monitored?

* Is there automated support for metrics-based
scheduling and tracking procedures?

It’s important to determine whether an
indicated schedule delay is a problem with the
people caying out the efforts or with a plan
that was too aggressive to begin with. That is,
don’t punish competent, bighly productive
develo pment staff if they don’t meet
unreasonable cost and schedule estimates.

5. BINARY QUALITY GATES AT THE INCH-

PEBBLE LEVEL'

Completion of each task in the lowest-level
activity network needs to be defined by an
objective binary indication. These completion
events should be in the form of gates that assess
either the quality of the products produced or
the adequacy and completeness of the finished

process.

PROBLEM ADDRESSED:

When planning and project monitoring are not
based on sufficient detail, any picture of where
the program is and how it is progressing is
simply an illusion.

By focusing on detail, specific development or
maintenance efforts can be more effectively
identified, planned, and tracked. By utilizing
quality gates that prevent effort outputs from
moving on until they pass all their predefined
acceptance criteria, and binary determination of
the effort’s completeness (it’s either done or its
not), evaluation of how actual progress is being

"The Aerospace Industries Association (AIA) has commented that the use of technical reviews, tests,
demonstrations, or audits as “completion criteria for ‘inch-pebbles’ is excessive in terms of value added to the
customer or the contractor.” AIA recommended the “retention of the ‘Binary Quality Gates’ concept and
deletion of references to the granularity of the tasks and to the term ‘inch-pebbles.”

PRINCIPAL BEST PRACTICES

made against the plan becomes

meaningful.

PRACTICE ESSENTIALS:

Ensure visibility of where the
development really is, based upon
products produced

Ensure that every lowest-level (i.e.,

inch-pebble) task:
- Is of short duration

- Expends a small percent of the
total budget

- Is dedicated to producing a
tangible product necessary for a
required deliverable

Define a binary gate for every
inch-pebble task (objective
acceptance criteria/tests for
determining whether the output
product is acceptable)

Give no Earned Value credit for an
inch-pebble task until the binary
gate is passed

STATUS CHECKS:

Have credible project status and
planning estimates been produced
based on inch-pebble quality gates
that can be aggregated at any
desirable level?

6.

* Have all activities been decomposed
into inch-pebbles?

® Has all near-term work been
decomposed into tasks no longer
than two weeks in duration?

* Have achievable accomplishment
criteria been identified for each
task? Are tasks based on overall
quality goals and criteria for the
project?

* Are quality gates rigorously
applied for determining task
accomplishment, without exception?

¢ [s there clear evidence that
planned tasks are 100 percent
complete before acceptance?

¢ Is there clear evidence of successful

completion of inspections?

¢ Are inch-pebble tasks on the critical
path defined, enabling more
accurate assessment of schedule risks
and contingency plans?

* Is the set of binary quality gates
compatible with the WBS?

PROGRAM-WIDE VISIBILITY OF
PROGRESS VS. PLAN

The core indicators of project health
or dysfunction—the Control Panel
indicators—should be made readily
available to all project participants.
Anonymous channel feedback should

be encouraged to enable bad news to move up and
down the project hierarchy.

PROBLEM ADDRESSED:

When everyone is involved in identifying
problems early, the likelihood of missing
problems is greatly reduced, improving risk
management and increasing the probability of

program success.

PRACTICE ESSENTIALS:

* Make Control Panel metrics continuously
available to all members of the team and the
customer

¢ Establish an anonymous communications
channel for anyone to report problems (This
channel will also be used by malcontents, but
it’s much better to get false alarms than miss a

major problem until it is too late to recover.)

¢ Maintain top-down, program-wide visibility
to reduce the number of reports of non-
problems

STATUS CHECKS:

¢ Are status indicators on the Control Panel
updated at least monthly?

* Are the status indicators integrated into the
management decision process?

* Is project status known by all project personnel?
¢ Can staff report problems as well as successes?

* Are project goals, plans, schedules, and risks
available to the project team and interested
parties?

¢ Is anonymous channel feedback visible to all

project members?

DEFECT TRACKING AGAINST QUALITY
TARGETS

Defects should be tracked formally at each
project phase or activity. Configuration
Management (CM) enables each defect to be
recorded and traced through to removal. In this
approach there is no such thing as a private
defect, that is, one detected and removed
without being recorded.

PROBLEM ADDRESSED:

The only way to keep program costs from
exploding is by finding and fixing defects as they
occur. The cost of fixing defects typically
increases by a factor of ten as they pass into each
subsequent development phase.

PRACTICE ESSENTIALS:

* Establish a goal for delivered defects per unit
of size (defects include requirements
problems)

* Implement practices to find defects when they
occur

* Track average and maximum time to close a
defect after it’s reported

* Track defect removal efficiency of:

- All defects found through all techniques
reported to and tracked by CM

- All defects reported from field for first year
after deployment

PRINCIPAL BEST PRACTICES

* Grade developers on defect
removal efficiency:

Number of Defects Found
& Fixed During Development

Number of Defects Found
& Fixed During Development
& First Year in Field

S1ATUS CHECKS:

* Are defect targets established for
the project? Are the targets firm?

* Are consequences defined if a
product fails to meet the target?

* Do project quality targets apply to
all products?

* Are there circumstances defined
under which quality targets are
subject to revision?

What techniques are used to
project latent defect counts?

* How are current projected levels
of defect removal empirically
confirmed as adequate to achieve
planned quality targets?

* Is test coverage sufficient to
indicate that the latent-defect level
achieved by the end of testing will
be lower than the established

quality targets?

* Are the inspection and test
techniques employed during the
program effective in meeting
quality targets?

* Do all discovered defects undergo
CM, and are accurate counts
achieved for defects discovered and
defects removed?

* Is there a closed-loop system
linking defect actions from when
defects are first detected to when
they’re resolved?

¢ Is defect information defined at a
level of granularity that supports
an objective assessment of

resolution on a periodic basis?

The cost of removing defects
typically accounts for between 40
percent to 50 percent of all
development costs. The bigger
software becomes, the greater the
rate at which defects occur—the
“software defect smowball effect.”

Typically 20 percent of all so ftwar
modules contain approximately 80
percent of the defects.

8. CONFIGURATION
MANAGEMENT

Configuration Management is an
integrated process for identifying,
documenting, monitoring, evaluating,

controlling, and approving all changes made
during the life cycle of the program for
information that is shared by more than one
individual. The discipline of CM is vital to the
success of any software effort.

PROBLEM ADDRESSED:

Complexity is the cause of most of the problems

attacked by the Best Practices. There is an
inherent complexity in large-scale software
projects that cannot be reduced. However, it is
very easy to increase software development and
maintenance complexity to a level that greatly
exceeds this inherent complexity. Failure at
Configuration Management is a sure way to
dramatically increase complexity to the level of
chaos.

PRACTICE ESSENTIALS:

® Formally track the status of problem reports,
Engineering Change Proposals, etc.

¢ Control change to:
- Deliverables
- Cost/schedule baselines
- External interfaces

* Have a formal process for making change to a
baseline

* Automate the CM process when possible

S1AaTUS CHECKS:

¢ Is the CM process integrated with the project
plan, and is it an integral part of the culture?

* Are configuration control tools used for status
accounting and configuration identification
tracking?

Are periodical reviews and audits in place to
assess the effectiveness of the CM process?

Are all pieces of information shared by two or
more organizations placed under CM?

* Do you have a process to measure the cycle
time?

MIL-STD-973 provides a good definition of
Configuration Management.

9. PEOPLE-AWARE MANAGEMENT
ACCOUNTABILITY

Management must be accountable for staffing
qualified people (those with domain knowledge
and similar experience in previous successful
projects) as well as for fostering an environment
conducive to high morale and low voluntary
staff turnover.

PROBLEM ADDRESSED:

Perhaps the single most important determinant
of project success is the quality, experience, and
motivation of the people working on it.

No matter how well versed a software person is
in the technology relative to the job, a
substantial investment is required to bring that
person to a level of detailed understanding
about the application being developed or
maintained. In spite of efforts to document the

PRINCIPAL BEST PRACTICES

software, vital information about
your project exists only in the minds
of select individuals. And with the
rapid advances in software
technology that have occurred and
will continue to occur, a high
percentage of software professionals
are not proficient in the best
technology related to their job. A
significant part of software
development and maintenance
requires human intellect and
creativity at a level exceeding that
required for most jobs. Demands
upon intellect and creativity are even
greater with a number of the new
technologies such as client/server
networks and the abstractions
required for object- oriented analysis
and design.

PRACTICE ESSENTIALS:

* Ensure that one of the project
manager’s incentives is to maintain
staff quality and a low
voluntary turnover rate

* Keep records of actual hours
worked as well as hours charged to
the customer (Extended
periods of actual work greatly in
excess of 40 hours per week are an
indicator of excessive future

voluntary staff turnover.)

¢ Treat your stars well (There’s a

very high near-term and projected
long-term demand far in excess of
supply for computer engineers and

computer systems analysts.)

S1ATUS CHECKS:

* Will the procuring/developing
program manager be on board for
the entire project?

¢ Are domain experts available?

* Does the project manager have
software experience in a project of
similar size and objective?

* Are all personnel fully aware of
their role in the project?

¢ Is quality of performance

acknowledged?

* Is personnel continuity ensured in
light of changing company or
program needs?

* Are opportunities for professional
growth available to all members of
the project?

* Do the developers believe in the
goals of the project and that the
schedule is feasible?

® Is the motivation and retention of
personnel a key part of
management assessment?

The preceding eight Principal Best Practices will
be of little belp if the technical staff is not
qualified or quits.

Studies of large projects bave shown that 90th
percentile teams of software people typically
outperform 15th percentile teams by factors of
four to five, with individual productivity ranges
of 26:1.

Studies have also shown a bigh relation

between organizations that invest in timely
training and their develo pment success, and that
a bhigh percentage of software professionals do
not keep up with the technology

In the event that a program manager desires additional information, the Network will provide source
materials and access to experts. We would greatly appreciate receiving your comments and suggestions

(preferably by e-mail).

E-MAIL: BEST@SPMN.COM PHONE: (703) 521-5231 FAX: (703) 521-2603

PRINCIPAL BEST PRACTICES

D s i by M i Ty

Warnings

Risk Liahilny
Dhvarditss Haours
Volurtar ¥ Tusnower

Risk Inspoat

$3IONVD

:
AL
,mw "
%
RE 1% m
B3 15] | |2
PlElaiz 3
AHEEIEIHE

INVd TOHLNGD

Canmiilative Mantha

X xixl Ix Apmeiunc ey uewsBouny sinmy-apoad

X JusLeBDUDY uowDINBRuEY

x| xfxf x| [afx sieb.pL MIPND I5UPEY BUPPR] 2949 q

X uplg 54 5591604 1o AIPISIA FpIm-wnBoLg

X [#ART S|qaeg-ypul sy o sapg Apng Loupg
Xixixixixjx| [Xix|xix|xixix| iuswebouoy pun Bunpeiyps peseq-satnew

X sucysedsu) [pauisg
b SRy uo Jusweasby

XXX X juss BouDyy ¥STy [pssy

Cummulstive Bamed Yolue Dolivored

$3I2110VHd 1538 TVdIONIdd

FIGURE 5.1 RELATIONSHIP BETWEEN GAUGES AND PRINCIPAL BEST PRACTICES

CHAPTER ©

BEST PRACTICES

CHAPTER 6

BEST PRACTICES

These practices are derived from
practices used by successful commercial
and defense software projects.

Because the practices are not tied to a
specific metric or method, program
managers can apply a practice in response
to particular corporate and program
needs.

The practices are grouped into seven

proven management areas (see Figure
6.1):

® Risk Management

¢ Planning

* Program Visibility

* Program Control

* Engineering Practices and Culture
® Process Improvement

* Solicitation and Contracting

Of course, many of these practices apply
to more than one management area,
though for the sake of simplicity they’ve
only been listed once.

1. RISK MANAGEMENT

Risk management is vital to effectively managing

any large-scale software effort because each

software system being developed or maintained is

dependent on a unique set of changing factors.
Risk management includes:

* Estimating the likelihood of identified risks

occurring

¢ Establishing potential short-term and long-
term consequences of risks

¢ Establishing a strategy and methods for
comprehensive risk management

* Monitoring

Risks often encountered on software projects
include, but are not limited to:

* Large system size

® Unclear and changing requirements

* New technologies

* System complexity

* Scope not adjusted to budget

* High dependency on specific people
Risks are incurred for reasons including:

* An inability to gauge the true extent and
complexity of efforts to be accomplished

* An inability to accurately predict the extent of

resources (material and time) necessary to

complete efforts

* An organization tries to exceed its

competencies
¢ User requirements are unstable

® The software environment and tools remain
immature

¢ The technical difficulties are more difficult
than anticipated

¢ Schedules are based on predetermined dates
rather than quantitative estimates

¢ Attempting efforts in a manner inconsistent

with the organization’s culture

¢ Relying on silver bullets to induce large
productivity improvement

Risk Management Best Practices include:

* Establish Management Reserves for Risk
Resolution

¢ Implement Metrics-based Risk Decisions
¢ Perform Continuous Risk Management
* Formalize Risk Tracking and Review

* Manage Impact of External Dependencies

BEST PRACTICES

PRACTICE: ESTABLISH
MANAGEMENT RESERVES
FOR RISK RESOLUTION

Every project should have a reserve of
money and potential staff marked for
addressing risk and its potential
effects.

PRACTICE ESSENTIALS:
Management reserves include:

* Time—Some experts recommend
adding 10 percent above the
estimated time-to-delivery to the
schedule.

* Money—Potential additional staff,
tools, and time add potential project
costs.

¢ Staff and potential staff—The
personnel organization should
continue to interview for good

people.

PROBLEM ADDRESSED:

Lack of an adequate risk reserve can
stop fixed-rate contract completion
and preclude adequate resources on a
cost-plus contract.

REQUIREMENTS:

* Project risk analysis, with prioritized

risks assigned an estimated value

* Government program office support
for risk reserve in contractor bids

S1ATUS CHECKS:

* Is a risk reserve buffer established at
the beginning of the project? Do
fluctuations in the buffer occur only
as a result of revised risk
assessments?

* Are adequate risk alternatives
documented to permit resource
redistribution in the event of
unexpected or expected risks being
realized?

Can expected risks be realized and
shortfalls in project resources be
recognized early enough to allow for
correction?

* Are checks and balances built into
the development process to
continually evaluate resources and
suggest alternative allocations to
maintain project integrity?

Risk reserve reevaluations and
updates should be performed along
with risk projections and

assessments.

Contractors (or developing agencies)
should not be held responsible for the

costs of creeping user requirements.

Throwing more programmers at an
overlong project can make it even
longer, but the right person in the
right job can make a big difference

in product results.

Cost-plus contracts without appropriate
incentives tend to decrease motivation for

contractors to establish risk reserves.

PRACTICE: IMPLEMENT METRICS-
BASED RISK DECISIONS

Metrics selection should be identified up front
and used to automatically trigger management
reviews.

PRACTICE ESSENTIALS:

® Predefined limits (such as a module of code
exceeding its estimated size by 10 percent) and
specific conditions (such as not finding expert
staff when needed) that automatically trigger

management reviews

* Time series analysis to project and analyze
long-term risks

® Metrics to measure risks concerning:
- Cost
- Effort or staffing
- Schedule
- System size

- Successful activity completion

® Product defects in terms of:
- Defect density
- Defect removal rates
- Incoming defects rate

- Defect closure rate

'R. Grady, Practical Software Metrics for Project Management and

Process Improvemeyfrentice Hall, 1993.

e L

PROBLEM ADDRESSED:

Schedule slippage, cost overruns, low quality,
dissatisfied customers, and even program
cancellation are potential results when established
metrics are not used as risk indicators.

REQUIREMENTS:

* Metrics that accurately represent cost, product,
quality, or organizational processes

® Measurements that trigger management reviews

* Experience in actual risk management and
mitigation

* Management reviews ensure timely corrective
actions for cost overruns, schedule slip, or
performance deficiencies

® Documentation of decisions and actions taken

STATUS CHECKS:

* Does the risk management plan define reviews
and triggers that must be quantitatively
specified and monitored?

Guidelines to determine useful metrics for visk

identification, analysis, and management include:

o Characteristics of the software development
process

® Maturity of the so fiware develo pmend gess

(Accoding to Grady projects should invest abo ut
18 percent of their total projedbaf during
requirements specifications to double check.)

BEST PRACTICES

PRACTICE: PERFORM
CONTINUOUS RISK
MANAGEMENT

Enabling proactive risk management

iteration throughout the project life

cycle is the most efficient way to

identify and mitigate risks before they

become serious problems.

PRACTICE ESSENTIALS:

* Iterative assessments

¢ Identification of key program risks

® Prioritization

* Communication paths for user
involvement

PROBLEM ADDRESSED:

Uncertainty is inherent in software
projects because of lack of
information, advances in technology,
and system complexity.
REQUIREMENTS:

* A proactive approach to risks

® Plans for risk mitigation steps

* An organizational structure and
activities for managing risk
throughout the product life cycle

* Analysis

¢ Action planning

® Tracking and control

* Automated risk management tools

STATUS CHECKS:

® Is the risk database formally and
routinely updated to reflect changes
to risk status?

¢ Is a list of the top ten risks produced
at the beginning of the project and
updated at least monthly?

* Does evidence exist that identified
risks have been mitigated or
accepted?

¢ Does data for each risk include risk
type, description, consequences, and
potential mitigation approaches?

St Use a risk identification checklist as

a guide to prepare a list of potential
risk items against the Work
Breakdown Structure.

Risks that are “showstoppers™—
with the potential for significantly
impacting the project—should be
reported on regularly

PRACTICE: FORMALIZE RISK
TRACKING AND REVIEW

All projects should establish and
maintain a formal risk tracking system
that incorporates risk traceability.

PRACTICE ESSENTIALS:

* A documented risk management plan

¢ A documented risk management process
* A prioritized list of risks

* Meetings with customers about major risks

PROBLEM ADDRESSED:

Risks that are not traced or tracked are not
managed, may be forgotten, or dismissed as
minor, and yet they may have serious
repercussions later in the program. Formal risk
tracking and review increases the recorded
knowledge concerning program risks, facilitates
communication of risk status, provides
traceability to the risk source, and ensures proper
management attention to risk.

REQUIREMENTS:

* Regularly scheduled reviews by senior
management

* Management attention to risk

* An automated tracking system that incorporates
risk traceability

¢ A risk database that saves all entries in case of
potentially related problems

* Formal presentations to management on risk
topics, including importance of risk, severity of
risk, how risk can be mitigated, and status of
current high-priority risks

STATUS CHECKS:
* Are risk procedures documented?

* Does the staff understand how the risk tracking
system works?

® Are risks assessed and prioritized both in terms
of likelihood and potential impact?

3

[

Be aware of cultural resistance to formalizing
risk management processes.

When visks are controlled, with a few
exceptions, plans are executed during normal
working bours.

The program manager bas the ultimate
responsibility for validating and tracking all
risks during the definition of material outcome
and the contract placement phases of the
acquisition model.

PRACTICE: MANAGE IMPACT OF
EXTERNAL DEPENDENCIES

All products that come from an external project
or result from an external action should be
identified and monitored.

PRACTICE ESSENTIALS:

* Monitor dependencies that have potental
significant impact until the risk is eliminated,
substantially decreased, or until the end of the

program

CHAPTER ©

BEST PRACTICES

PROBLEM ADDRESSED:

External dependencies, including
activities, resources, information,
conditions, and influences can
potentially cripple a project.

REQUIREMENTS:

® Memoranda of understanding with
organizations that control the
external dependencies

* Contract to limit liability of risks
resulting from external dependencies
(for example, failure of the
government to deliver the product

on time)

STATUS CHECKS:

* Are external dependencies clearly
identified?

* Are external dependencies
represented on the Work
Breakdown Structure?

* Are procedures in place for
monitoring and managing the status
of the external dependencies?

Because internal program problems
demand immediate attention, too

little attention is paid to external
dependencies, which increases risk.

Contingency scenarios for identified
external dependencies should be
developed.

eSS,

2. PLANNING

Software management planning includes:
* Defining the product goals

* Structuring the project

* Reviewing the plan

* Scheduling the project

* Testing the plan

* Costing the plan

* Frequently revising the plan as project
circumstances change

Planning starts top down—a client needs
software to solve a specific problem—and it
should proceed mostly bottom up, as plans are
refined or changed.

Compare your plans to previous experience and
bistorical sofrware project data.

At the beginning of the project, resolve standard
definitions for:

* Valid product and process measurements

* Mutually acceptable analysis techniques

¢ User product acceptance criteria

Resources can be estimated in several ways:

* By analogy to similar projects

* According to expert studies and opinions

® Build-to-cost

e)

* Top down
* Bottom up
¢ Cost modeling

After initial brainstorming sessions, team
planning should continue as short, formal
meetings followed by short, clear, well-
distributed minutes.

Planning should be iterative and evolutionary,
with plans updated regularly to reflect project
realities.

The project plan should be clearly documented
and made available to everyone on the project.

High- and low-level tasks should be described in

terms of their:

* Purpose

* Performance approach
¢ Inputs

* Outputs

® Metrics

® Risks

® Resources

Plans should be tied to tasks and layered onto the
project master schedule to cross-check budget
and schedule adequacy.

Results of estimation tools should beobomated
orcorected with estimation verification tools.

CHAPTER ©

BEST PRACTICES

During initial planning, a quality plan
should be produced that identifies the
quantitative goals for software product
quality, metrics, and any process
changes that are needed from the
start.

Planning Best Practices include:

¢ Quantitative Software Estimation/
Verification

¢ Joint Team Involvement
* Activity Planning

® Data Requirements

PRACTICE: QUANTITATIVE
SOFTWARE ESTIMATION/
VERIFICATION

Quantitative cost estimation and verification are
essential to reducing estimation errors.
Commercial estimating tools tuned to an
organization’s database of past projects increase
the likelihood of accurate estimates.

PRACTICE ESSENTIALS:

* Software system size is the cornerstone
estimate. Size affects the schedule, effort, cost,
productivity, and quality of software systems.
Software bugs, or defects, grow at a rate linear

to system size.

* Large software systems consist of millions of
lines of code, too much for an individual or
small group to fully understand, much less
write. Current methodologies for sizing
systems are:

- Counting Source Lines of Code (SLOC)

- Estimating processing events that will take
place for a specified duration

- Assigning and adding up Function Points, a
mathematical model in which Points
correspond to features to be delivered to the
client

PROBLEM ADDRESSED:

Inaccurate estimates are caused by ineffective
estimating tools, lack of an accumulated historical
database, and/or growth in project scope.

REQUIREMENTS:

* Software cost estimates predicated on the
developer’s past performance in the domain and
on historical data

* Regularly scheduled estimate updates that
detail changes to baselines and their rationale,
including progress, quality, and cost

® Regular updates to correspond with reality
throughout the project, and reflected in the
contractor’s software development plan or
through other media established by the

contract

StAaTUS CHECKS:

¢ Is more than one type of estimation technique
used, and are the results compared and
analyzed?

* Is historical data used to support the estimates?

* Are the estimation process, assumptions, risks,
and results documented?

® [s the estimate reviewed with higher
management and the customer?

* Are estimation techniques reapplied regularly
to produce more accurate forecasts as new data
becomes available?

All estimates should evolve along with the

product under develo pment.

Changes and updates to the contractor’s proposal

should be mutually agreed to by the acquirer
and the contractor

BEST PRACTICES

Documenting the calculations of

individual estimates allows for easier

review and understanding.

PRACTICE: JOINT TEAM
INVOLVEMENT

Multdisciplined support teams should

translate initial and evolving user
needs into clear, concise, and
complete system requirements.

PRACTICE ESSENTIALS:

¢ Techniques that capitalize on
customer/contractor involvement
such as:

- Integrated Product Teams (IPT's)

- Joint Requirements Planning

(JRP)
- Joint Application Design (JAD)

- Internal and user prototype

demos, especially of the interface

as it evolves

- Structured acceptance test
sessions

PROBLEM ADDRESSED:

Failure to meet customer and user
expectations caused by missing or

ineffective communication among
stakeholders.

REQUIREMENTS:

* Active participation by team
representatives

* Prewritten agenda and constraints
for all team meetings

* Clearly stated goals and objectives

¢ Professional facilitation to assure
focus, participation, and mutually
understood communications

¢ Team members from the following
organizations and domains of

expertise:
- Acquisition management
- Users
- Developers

- Product support personnel

StAaTUS CHECKS:

¢ Is team involvement planned to
ensure that requirements are
understood by designers and
developers?

* Are the project objectives well
defined and documented?

* Does the team have experience in
the application area and in the
project approach?

Representatives must all be committed to the
team and its o bjectives, or the team will not

survive the product life cycle.

Moving project rework from the construction
phase of a project to the design phase can be
accomplished WIAD.

Structured user acceptance testing helps prevent

emors before aproduct is fielded.

PRACTICE: ACTIVITY PLANNING

Detailed milestones used by the developer should
be scheduled in evolutionary “inch-pebbles.”*

PRACTICE ESSENTIALS:

* A top-level Gantt chart showing major project
commitments is the timetable for product
delivery to the customer

* A mid-level PERT chart shows milestones to
the end of the project and relationships among
project tasks

* Lowest-level activities represented as inch-
pebbles, because:

- Contingencies can be planned by estimating
negative impacts on the sum of individual

inch-pebbles

- Impact of potential problems of resource
availability or shortages can be analyzed to

determine potential slips

¢ A detailed PERT chart at the task level, with
each task in the activity network described in

* See the footnoted AIA comment on p. 39.

terms of duration, relationships, and
dependence on other tasks being completed on
schedule.

* Short-term or evolutionary planning that
allows:

- Identification of ineffective activities

- Dynamic allocation and reallocation of

resources

- Responsiveness to changes in long-term

goals

PROBLEM ADDRESSED:

Traditional planning creates inaccurate estimates
and significant risks for large, complex projects.

REQUIREMENTS:

* Activities planned around major program
milestones and design reviews

* Similar practices used by both acquirer and
contractor teams to establish hierarchical
reviews to support the different levels and
associated needs of the acquirer and contractor
organization

* Program management involved in the
development process without micro-
management

* Detailed program plans developed for all tasks
including:

- Task description

BEST PRACTICES

e Teiindl

- Approach

- Inputs/outputs

- Schedules

- Metrics

- Resources needed

* Hierarchical schedules that provide
information that meets the needs of
all personnel involved in the project,
because the upper-level schedules
are broad-based while the lower

levels are specifically task-based

® Methods for monitoring and
controlling potential slips for tasks
with greatest schedule impact

STATUS CHECKS:

* Is there a hierarchical set of plans
(or at least high-level and detailed
plans) identifying roles and
responsibilities, end products, life
cycle stages, etc.?

* Are individuals associated with the
accomplishment of specific
activities?

* Are Gantt charts updated weekly?
* Are milestones pass/fail?

A project planning tool should be
used when possible.

Early milestones should become more

detailed as data becomes available.
When possible, high-risk items

should be identified and kept off the

critical path through concmemt
scheduling and risk mitigation
activities.

PRACTICE: DATA
REQUIREMENTS

Data requirements should address
programmatic, process, and product
needs, enable effective customer
participation in product development,
and support the product life cycle.

PRACTICE ESSENTIALS:

* Management, planning,
engineering, control, and
maintenance support of the project
data

* Contractor’s processes, methods,
and environment data

¢ Contractor’s appropriateness for
product support data

¢ Training necessary to provide full
team access to and usage of the
newly developed software

PROBLEM ADDRESSED:

More data is often considered better
than less data without realizing the
cost of the data and the tradeoffs
between producing data vs. putting
more effort into developing better
quality software.

REQUIREMENTS:

* Address programmatic, process, and product
needs

* Enable effective customer participation in
product development

¢ Support intelligent tradeoffs during the product
life cycle based upon competitive prices and
open to all prospective competent providers

StAaTUS CHECKS:

* Are requirements for shared data identified
early and clearly?

* Are project plans scaled to software

development requirements?

BEST PRACTICES

3. PROGRAM VISIBILITY

Visibility into product and project
progress should be available and
understandable to every member of
the project team. To control and
manage software projects, program
managers need readily visible
information that provides status and
trends. Information-based software
program management includes:

* Identification and definition of the
program software issues and

objectives

* Quantitative and qualitative data
collection and analysis

¢ Evaluation of analysis results and
possible courses of action

¢ Implementing corrective action

Visibility into the development
processes can be gained by:

* Selecting software and program
metrics that promote project
visibility

¢ Attending software development
meetings

* Sharing changes with contractor and

customer program management

Measurement provides a software
organization with a means to make
progress visible. Accurate metrics
allow project managers to:

® Measure specific areas of software
product or process

* Derive basis for estimates

® Track project progress

* Monitor software quality

® Analyze defects

® Monitor process improvement

The major indicators of product status
—the Control Panel indicators

(Chapter 2)—should be:

® As accurate as possible

¢ Updated weekly

* Viewable by all project members

The Control Panel, preferably
computer-generated, should be posted
in high-traffic areas like the cafeteria
and on the way to rest rooms.

Program Visibility Best Practices
include:

® Practical Project-Oriented Software
Measurement Process

® Issue-Driven Measures

¢ Internal Engineering Analysis
Process

e Effective Communication Structure

PRACTICE: PRACTICAL, PROJECT-
ORIENTED SOFTWARE
MEASUREMENT PROCESS

An agreed-upon, documented measurement
process with trained users, and backed by upper-
management commitment, should be designed to
track and communicate measures that promote
visibility of the project.

PRACTICE ESSENTIALS:

* Software measures driven by program-specific

issues and objectives

¢ Automated tools to process the data generated
by product development, including:

¢ Data collection
® Data processing and management
* Results analysis

® Reporting

PROBLEM ADDRESSED:

The software measurement process provides the
framework for structured and consistent
identification and evaluation of software program
objectives, status, and issues.

REQUIREMENTS:

* Project visibility

* Appropriate and accurate measurements

¢ Committed backing from upper management

* Agreement by acquirer and contractor

¢ Clear and current documentation

¢ Collection and analysis of low-level software
data

* Senior management commitment in both the
developer and acquirer organizations

STATUS CHECKS:

* Are measurement results widely used in
organizational decision making, and are they
communicated and accepted outside of the
software development organization?

* Are project reports based on measurable data?

* Does project staff accept, and assist in, data

collection?

* Do both the acquirer and developer have access
to the software measurement data and maintain
independent measurement analysis capabilities?

The acquirer, contractor, and customer should
use the same models and metrics to measure the

same system charactevistics.

The software measurement data and subsequent
analysis results must be considered in the context
of other “engineering” information from the
same pro gram.

The software measurement process is applied to
support program planning, develo pment, and

sustaining engineering.

Data from completed projects should be collected
in a database to serve as input for futur
projects.

BEST PRACTICES

PRACTICE: ISSUE-DRIVEN
MEASURES

Measures should be based upon
answering a need, question, or issue in
the software project.

PRACTICE ESSENTIALS:

* A goal-driven metric paradigm

¢ Plans, deltas to plans, and actual
measurements

* Predefined pass/fail criteria

* Modifications from the baseline per
development activity

* Work Breakdown Structure design

® Metrics to:
- Derive the basis for estimate
- Track project progress
- Verify quality levels
- Analyze defects
- Validate Best Practices

PROBLEM ADDRESSED:

Measures that are not driven by
specific project needs appear to be
trivial and, as a result, are not carried
out.

REQUIREMENTS:

¢ Timely data collection and
processing

PR

e Measurement data characterized as

to source

¢ Flexible measures for changing
issues and objectives

STATUS CHECKS:

* Are project turnover rates tracked?

* Are collected measures clearly
linked to specific project needs?

* Are the number of on-time quality
gates tracked?

¢ Are the number of unresolved high
and low risks tracked?

¢ Is the incidence of requirements
creep tracked?

* Are the number of defects opened
and closed tracked?

The fundamental metrics to belp
program managers evaluate the
project are verified progress against
plans, costs, and quality levels.

PRACTICE: INTERNAL
ENGINEERING ANALYSIS
PROCESS

The quantitative and qualitative
output of reviews such as peer reviews,
inspections, and walkthroughs
provides visibility of the project.

PRACTICE ESSENTIALS:

* Clearly defined entry and exit criteria for each
activity
¢ Predefined, documented metrics

* A purpose focused on a well-defined scope of

technical or management issues and objectives

* A common and well-defined documentation
and reporting structure for implementing
activities

PROBLEM ADDRESSED:

It is difficult to control a project if you can’t
assess its goals or progress toward them. The

results of inspections and reviews provide

significant visibility into the status of the project.

REQUIREMENTS:
* Measurement program to capture data
* Use of reviews and inspections

* Project structure that ensures data collection
feeds the measurement process

¢ Qutput of reviews and inspections is tracked
and reported for collection

¢ Identified problems from reviews and
inspections are placed under configuration
control to ensure completion

STATUS CHECKS:

* Are metrics used to gauge the effectiveness of

formal inspections, walkthroughs, and reviews?

® Are the results of inspections and walkthroughs
used to estimate or predict the level of quality
in the product?

¢ Is the output of reviews and inspections tracked
and reported for collection?

* Are problems that are identified in reviews and
inspections placed under configuration control
to ensure completion?

* Are inspections conducted by qualified staff
sufficiently knowledgeable to assess quality?

Data analysis must bave a clear goal in ovder to
obtain the desired information, not necessarily
the desired results.

PRACTICE: EFFECTIVE
COMMUNICATION STRUCTURE

Effective communication means open
communication that gives the development team,
management, and the client easy access to project
status and information.

PRACTICE ESSENTIALS:

* Technical Interchange Meetings (TTMs)

® Program Management Reviews (PMRs)

* Management Status Reviews (MSRs)

® Technical Working Group Meetings (TWGMs)

¢ Event-driven baseline/milestone reviews

¢ Independent Verification and Validation
(IV&V) processes

BEST PRACTICES

¢ Software product and process
quality and compliance audits

* Software product prototypes and
demonstrations

* Groupware, or collaboration
software, to include:

- On-line meeting arrangers

- On-line bulletin board services,
e-mail lists for memos, minutes,
and messages

- Desktop publishing with
automated templates for software
engineers who do not like to write

- An on-line reference library with
divisions for technical, business,
and marketing articles, or
references to their whereabouts

PROBLEM ADDRESSED:

As the project grows, an effective
communication structure must keep
pace with the need for information
flow.

REQUIREMENTS:

* An organization in which all staff
understand their assigned roles, job
responsibilities, and reporting
commitments

® Meetings that act as tools for project
reporting

* An automated reporting system that
indicates status of the project and
the basis for those indications

STATUS CHECKS:

* Are meetings held regularly and

documented concisely?

* Have the acquirers and the
developers agreed on current
requirements?

* Are project members up to date with
project and product goals?

* Are members of the project, top to
bottom, plugged into an electronic
communication network?

4. PROGRAM CONTROL

Software management program control requires:
¢ Planning

* Executing to the current plan

* Incorporating changes to the plan and project
® Meeting product resource and quality goals

* Managing change control

¢ Coordinating group and individual efforts

* Ensuring adequate quality checks to promote
high software quality

Program control activities underlie the software
development process, affect software quality, and
include:

* Quality assurance
* Testing and evaluation
* Configuration Management

Quality gates at key points in the development
process are used to monitor and ensure the
quality and integrity of products. Quality gates
include:

* Peer reviews
* Inspections
* Walkthroughs

* Structured project audits

Poor program control shows up in low quality,
low productivity, low user satisfaction, cost
overruns, long schedules or missed milestones.

Program Control Best Practices include:
* Test Methodology

* RegressionTesting

* Computer-Aided Software Testing

® Error Source Location

¢ Independent Verification and Validation
(IV&V)

¢ Quality Gate Completion Criteria

¢ Configuration Management Coverage
* Requirements Change Management

* Baseline Methodology

¢ Technical Quality Assurance

BEST PRACTICES

PRACTICE: TEST
METHODOLOGY

A test approach that is tailored to, and
consistent with, the development
methodologies provides a traceable
and structured approach to verifying
requirements and quantifiable
performance.

PRACTICE ESSENTIALS:

¢ Assurance that requirements and
criteria are testable through design,
coding, and test

¢ User, tester, and requirements

developer involvement
* Consistency throughout the project
* Test methodology reflected in:

- Task descriptions

- Test plan

- Data collection plan

- Analysis methodology

- Reports

- Test requirements correlation
matrix

- Other development methodologies

PROBLEM ADDRESSED:

Test problems are caused by a lack of

testable criteria, by tests that cannot
be structured only as a final check,
and by inconsistent testing.

REQUIREMENTS:

* A test methodology tailored to the
project size and needs

* Professional testing/quality
assurance staff

* A definitive strategy for software
testing as part of the organization’s
framework

S1ATUS CHECKS:

* Is the test methodology agreed to by
users, testers, and requirements
developers?

* Is test coverage adequate for risk
handling?

* Are test methodology meetings held
regularly, and documented clearly
and briefly?

* Are tests linked to, or traced to,
requirements?

Test methodologies should be
consistent with the set of
development methodologies so that
information can serve as data for
other automated systems.

PRACTICE: REGRESSION TESTING

Regression testing must be conducted to find any
new defects following test correction.

PRACTICE ESSENTIALS:

* A set of test cases that will ensure problems
have been fixed

* No new defects introduced when fixing old
defects

PROBLEM ADDRESSED:

Inadequate regression testing results in damage

to previously operable functions and capabilities.

REQUIREMENTS:

* Computer-aided regression tools that:

- Automate the execution, management, and
verification of the test suites

- Can capture and play back all events that
occur during user sessions

e Libraries of error-free, effective, reusable
regression test cases for projects with multiple
releases, placed under technical and

management control

S1ATUS CHECKS:

* How does regression testing ensure that defect
removal was successful and no new defects were
created?

* How are test case suites for regression testing
determined?

* What procedures ensure that the appropriate
amount of regression testing is performed?

All software changes that have an increased
likelibood of secondary failure, fault omer
intro duction, including assembly languages,
patches and conditional compilations, need
retesting.

PRACTICE: COMPUTER-AIDED
SOFTWARE TESTING

Computer-aided software testing combines
proven testing design, development, and
management practices with advanced digitized
testing tools.

PRACTICE ESSENTIALS:

* A test plan that is compatible with the
development schedule

* Clearly defined methodology for assessment
and evaluation

* Test coverage for the entire project

e Quantification of functional and technical
project risks

* Definition of the test population
® Definition of testing metrics

* Repeatable testing practices that reduce the
subjective nature of results and shorten retest
time

BEST PRACTICES

PROBLEM ADDRESSED:

Testing software is very time- and
labor-intensive.

REQUIREMENTS:

* Knowledgeable personnel

* Investment in digitized testing tools

* Tools for measuring defect potential

StATUS CHECKS:

* Are tools used to automate testing
where possible?

* [s there adequate evidence that
automated tools test what they are
designed to test?

are instructed to test, and will

analyze results according to the
selected algorithm.

Inadequate use of automated tools

forsoftware quality checks is
associated with a numberof
software visks such as cost ovan
and missed schedules.

PRACTICE: ERROR SOURCE
LOCATION

"Techniques for identifying the source
of errors should be utilized.

Computers will test only what they

PRACTICE ESSENTIALS:
* Designing the system for testability

* Designing a comprehensive test
plan, including:

- What to test (you cannot test
everything)

- How to recognize an error
- How to track tests results
- How to deal with software changes

- How to deal with test plan
changes

- Configuration Management
version control

- Error tracing to the module level
* Designing a test suite that includes:

- Repeatable test cases

- Kiviat charts for quality thresholds

- Metric analyzers to focus on
complex or undertested modules

- Regression tests for software
changes

- Cyclic or random testing
- Stress-load testing
- Defect causal analysis

- Path coverage for critical modules

PROBLEM ADDRESSED:

Unless techniques provide accurate information
about error source locations, it is not possible to

make the correct fixes.

REQUIREMENTS:

* Multiple discovery techniques, including
inspections, reviews, tests, automated error-
locator tool and training in its use

S1ATUS CHECKS:

* Can errors be tracked from discovery to
disposal?

* Are errors prioritized according to user
requirements?

PRACTICE: INDEPENDENT
VERIFICATION AND VALIDATION
IV&V)

Objective, unbiased software verification and
validation should be conducted by an
independent agent.

PRACTICE ESSENTIALS:

* Analysis of program requirements

* Analysis of program design

* Analysis of program code

® Program testing

* Development and/or use of automated tools

¢ Technical evaluation

PROBLEM ADDRESSED:

Late identification of software errors

Poor software quality

* Lack of management visibility into the

development process

Inability to control schedule slips and cost
overruns

¢ Lack of effective risk management

methodology

Inadequate systems integration planning

REQUIREMENTS:

Independent testing and evaluation of the

technical acceptability of the software in terms
of:

- Operational requirements

- Readiness of software system for its intended
use

- Integrity of the completed system for its
mission

An independent set of test tools and
simulations

An objective assessment of the correctness of
the development team’s solution at each phase

of design

Independent tests, tools, and simulations to
confirm performance of the software against
the specified performance

BEST PRACTICES

s
P
N

¢ Comparisons with development
organization of errors vs. time
STATUS CHECKS:

* Are test specifications, designs,
cases, and reports produced?

* Are metrics on defect data analyzed
to enable product improvements?

If necessay, verification and

validation can be functionally
independent, organizationally
independent, or independent

through program control.
PRACTICE: QUALITY GATE
COMPLETION CRITERIA

For each quality gate identified,
criteria should be developed that
indicate successful completion of the
gate.

PRACTICE ESSENTIALS:

* Quality gate completion criteria for
inspections, walkthroughs, reviews,
tests, requirements, design, code,
and documentation

® Process standards
¢ Product standards
e Historical data

® Limits

¢ Corrective action requests promptly
answered

¢ Real-time feedback on development
process adherence

PROBLEM ADDRESSED:

Without well-defined completion
criteria, quality assurance is forced to
catch up with defect detection during
later phases of the program, which is
inefficient and costly.

REQUIREMENTS:

* User-developer teams to agree on
completion quality

¢ Support from upper management

StAaTUS CHECKS:

* Are there evaluation standards for
all engineering data products at each
quality gate?

* Has a quality-level threshold been
established that all products must
meet or absolutely be repeated?

* [s a set of quality inspections in
place to assess the products and
process attributes of the software,
and is it effective?

* Are unambiguous quality criteria or
predefined performance standards
established for each product or
deliverable?

* Are quality gates integrated into the project REQUIREMENTS?

such that they check product quality at discrete

. i requiremen
points in the project infrastructure just prior to CM applied to requirements,

5 specifications, design documents, and code,
general user

including:
w5732 Samples should be taken randomly from the
N - Version identifiers

design, code, and documentation to determine
whether the product passed the last gate with an - Delta identifiers
excessive amount of defects. If so, the product

should be returned to the previous process. - Derivation records
Criteria should be measurable, simple, and * Automated problem tracking and CM tools to
pass/fail. help maintain accurate records of:

- Proposed changes
PRACTICE: CONFIGURATION

MANAGEMENT COVERAGE - Ownership

Configuration Management (CM) applied - Test results
effectively throughout .the program prevents - Implemented changes
uncontrolled, uncoordinated changes to shared

project information. * Three boards required:
- Requirements Review Board
PRACTICE ESSENTIALS:

e - Engineering Review Board
e Identification of all data

L. - Configuration Control Board or
® Documentation internal and external to the

) Change Review Board
project
* Monitoring standards and procedures StAaTUs CHECKS:
¢ Evaluation of the status and consistency of all * Are review boards defining and enforcing CM
shared project information procedures?
* Is it possible to trace a defect from first report
PROBLEM ADDRESSED: to final disposal?

Lack of effective change control increases the Few people like the administration of CM, but

number of defects and amount of rework all must cooperate to make CM work.

required during the project.

BEST PRACTICES

PRACTICE: REQUIREMENTS
CHANGE MANAGEMENT

A requirements management process
supports the definition, identification,
allocation, management, and control
of all project requirements.
Requirements must be satisfied and
proposed changes evaluated for cost,
schedule, and effects.

PRACTICE ESSENTIALS:

¢ Sufficient understanding of the need
for control by team members and

customers

® Rigorous configuration control of
requirements to the lowest possible
level

* Appropriate mapping of
requirements to Configuration Items
(ClIs) and development activities

* A process that manages and controls
requirements analysis, definition,
tracing, and maintenance

PROBLEM ADDRESSED:

Loosely controlled requirements cause

budget overruns and schedule delays.

REQUIREMENTS:

* Experienced personnel

¢ Computer support tools to maintain
the requirements and to check for
consistency

S1ATUS CHECKS:

* Are baselines updated as changes are
made?

* Are project management and control
procedures fully documented and
well integrated into the
development life cycle?

* Do requirements undergo formal
change control, including
prioritization of proposed changes,
authorization for changes, and issue
control of requirements documents?

Overthe course of development,

users’ needs change.

To minimize damage to the softwar
and schedule, select effective
methods, tools, and approaches for
managing requirements growth.

PRACTICE: BASELINE
METHODOLOGY

Prior to beginning system definition, a
methodology to establish a program
baseline should be agreed to,
approved, published, and followed.

PRACTICE ESSENTIALS:

* A user and supplier agreed-upon
Initial Operation Capability 1OC)
description

¢ Clear definitions of the program
baselines throughout the project,
and how each is to be developed,
approved, recorded, changed, and
measured

* Methods based on project requirements
* Consistency with other project tools
¢ Criteria to evaluate effectiveness

* Established as part of the culture

PROBLEM ADDRESSED:

Unrealistic program baselines drive project
schedules, costs, and performance requirements
astray.

REQUIREMENTS:

¢ Compatible with Configuration Management
software

® Domain experts

® Product baseline, which describes the software
in terms of function, performance, and
operation

¢ Functional baseline, which is established after a
successful requirements review

e Allocated baselines, which are established at the
end of preliminary, or architectural, design
StATUS CHECKS:

e Have formal baselines been established after
formal reviews?

¢ Are formal hand-off procedures established for
CM baselines and responsibilities?

* Are standards in place for documentation
included in the formal baseline?

Valid program baselines cannot be established
without an understanding of the associated
software om the project and the user and
acceptance requirements.

PRACTICE: TECHNICAL QUALITY
ASSURANCE

Projects need technical quality assurance, not
format-checking quality assurance.

PRACTICE ESSENTIALS:

* People who are assigned quality assurance jobs
in alternation with the sexier design jobs, and
who are treated as value-added members of the
development team

PROBLEM ADDRESSED:

"Too often, quality assurance personnel on DoD
projects serve as format checkers rather than
performing a real technical role.

REQUIREMENTS:

¢ Organizational freedom but, as provided in
MIL-STD-498, not necessarily organizational
independence that historically leads to
adversarial organizations

® Well-trained and well-paid personnel

* Government recognition of the need for quality
assurance role change

CHAPTER ©

BEST PRACTICES

S1ATUS CHECKS:

* Are reliability models equipped with
defect tracking to predict the latent
defects in the software?

¢ Are lower bounds defined for defect
detection efficiency?

* Have conditional acceptance criteria
been defined?

* Are the planned objective quality
levels for the software consistent
with the planned usage or mission of
the software?

* Are procedures in place to assess the
quality of deliverables before they
are placed under configuration
control?

w2 Quality assurance should be able to
show one-to-one gespondence
between organizational activities
and deliverable/product quality

improvement.

Active quality assurance teams
typically require about five percent

of the staff of the group they
support. Tasks performed include:

* Predicting defect potential

* Predicting defect removal
efficiency

® Predicting quality levels of
software

® Measuring defect numbers,
severity, etc.

* Assisting in selecting defect
removal techniques

* Performing tests and validating
results performed by others

® Measuring and calibrating defect
removal efficiency

5. ENGINEERING PRACTICES AND CULTURE

Good software engineering is both an art and a
craft. Software engineering art makes software
that solves a problem better than a previous way.
Software engineering craft evolves continuously
as programming techniques move from
structured to object-oriented models, iterative
phases complicate the development life cycle
model, and new technologies are built and used.

Approaches to software development include:

* Phased design in which new tasks don’t begin
until prior tasks finish

¢ The release, or version, approach that delivers
a product in which each additional increment

is a semi-independent program

* The evolutionary approach, that takes
advantage of the fact that, as more software is
written, more and better ways to write
software evolve. The evolutionary approach

allows software coding to begin with a minimal

number of firm requirements, and includes:
- User orientation

- More, faster iterations of analysis, design,
build, test, fix, and retest cycles

- Stress on definition and measurement of

objectives
- Multiple system attributes

- Use of an existing system to start

Software development engineering needs include:

* Better programmer productivity

* Lower software maintenance costs
* Personnel to use new programming capabilities
* CASE tools in production environments
® Trained programmers, technicians, and users
* Automated design and test systems, including:
- Interface builders
- Software development workbench
- Configuration Management system
- Defect tracking system
- Dynamic modeling and simulation

- Integrated Computer-Aided Software
Engineering (I-CASE)

- Graphical User Interfaces (GUIs)

- Interoperability with other software
- Software portability across platforms
- Distributed processing

Engineering Practices and Culture Best Practices
include:

¢ Include User in a Multidisciplined
Requirements Support T'eam

* Encourage Compatible Analysis and Design
Methods

* Encourage Software Architecture Definition
and Maintenance

* Encourage Requirements Engineering Process
that Includes Use of Prototypes, Models, and
Simulations

CHAPTER ©

BEST PRACTICES

* Encourage Proactive Change
Impact Analysis

¢ Plan for Domain Engineering in
Acquisitions

¢ Encourage Use of Clean Room
Techniques

* Tailor Engineering Practices to
Projects

* Encourage Use of Software
Development Standards such as
MIL-STD-498

* Assess Organizational Effectiveness

PRACTICE: INCLUDE USER IN A
MULTIDISCIPLINED REQUIREMENTS
SUPPORT TEAM

A multidisciplined requirements definition
support team should translate initial and evolving
user needs into clear, concise, and complete
system requirements.

PRACTICE ESSENTIALS:

¢ Team members from the following
organizations and domains of expertise:

- User command
- Procuring organization
- Support organization

- Knowledgeable users, particularly with
domain knowledge of the proposed system

- Testers
- Contractors

- Developers after contract award

PROBLEM ADDRESSED:

Inaccurate or incomplete requirements definition
is often the result of insufficient user
understanding and contribution.

REQUIREMENTS:

* User involvement through requirements

evolution

e Goal to make sure that what is delivered meets
the user’s needs

* Service in an advisory capacity to the program
office

* A process to assure consolidated user inputs to
the team

S1ATUS CHECKS:

* Is user involvement planned to help ensure that
designer’s and developer’s requirements are
understood by staff?

* Are project objectives and customer restraints
well defined and documented?

* Are all relevant stakeholders in the
requirements document considered (designers,
testers, customers, technical authors,
management, and marketing)?

e Are customers educated in the limitations of

computer solutions?

PRACTICE: ENCOURAGE COMPATIBLE
ANALYSIS AND DESIGN METHODS

Analysis and design methods should be based on
the project’s domain area, application area, and
desired output design model.

PRACTICE ESSENTIALS:
* A model with the following characteristics:

- Resilient to change
- Extensible

- Maintainable

- Reliable

- Verifiable

BEST PRACTICES

PROBLEM ADDRESSED:

Methods often don’t take into account
the particularities of the project and
product.

REQUIREMENTS:

® Methods suitable to the domain area

(signal processing, combat direction
systems, communications systems,
information systems, etc.)

® Methods suitable to the application
area (real-time distributed
processing, concurrent processing,
etc.)

® Methods that enhance clarity of the
desired software architecture

* Design model software components
that closely resemble the entities of
the problem domain

* Easy-to-understand design model

* Supported by an Integrated
Computer-Aided Software
Engineering (I-CASE) system

STATUS CHECKS:

* Are the development teams trained
in selected analysis and design
methods?

e Are the methods for different life

cycle activities compatible?

* Are the methods adequate for the

specific domain and application
area?

* How are system and software
architectural goals supported?

Methods support clear transitio ns

7next.

PRACTICE: ENCOURAGE
SOFTWARE ARCHITECTURE
DEFINITION AND
MAINTENANCE

A software-intensive system requires
early definition of the software
architecture that is consistent with
operational scenarios and maintenance
throughout development.

PRACTICE ESSENTIALS:

* Standards-based design built over a
standards-based, service-layer model
such as the Technical Architecture
Framework for Information

Management (TAFIM)

* Clear definition of the software
architecture, preferably executable

* Software system functionality
mapped to software system
components

® Clear definition of relationships
among components (interfaces,
protocols)

from one development activity to the

* Rules for component composition (constraints),
execution model (data and control flows), and
clock

¢ User-operational scenarios

* Compatibility with currently operational
systems

PROBLEM ADDRESSED:

Systems without clear and validated architecture
lack flexibility to readily adapt to changing
requirements and take advantage of reuse/COTS.
REQUIREMENTS:

* Rationale for design decisions

¢ Validation of the architecture by peer and
expert review, including function, structure,
and behavior

¢ Discussion of stability of the architecture
through vendor updates

* A process for maintaining currency in
architecture documentation
STATUS CHECKS:

* Is the software system architecture required as
part of the response to the RFP?

¢ Is the software system architecture consistent
with domain or product-line architectures?

* Are there plans to validate the software system
architecture with the users?

* Is there a process in place to manage changes to

the software system architecture and design
during implementation?

software system architecture and its
maintenance in their proposals.

System architecture should be defined and
approved early, and updated regularly to reflect
changing conditions.

Deviations from the standard should be
approved at the coect level, documented, and
commaunicated to the domain or product-line
manager as a vecommended change.

PRACTICE: ENCOURAGE
REQUIREMENTS ENGINEERING
PROCESS THAT INCLUDES USE OF
PROTOTYPES, MODELS, AND
SIMULATIONS

An adequate requirements engineering process
includes the use of prototyping, modeling, and
simulation to define and clarify user
requirements, and to validate implementation
practicality.

PRACTICE ESSENTIALS:

* Rapid development of representation of a
system characteristic including:

- Physical structure of the system

- Visible system capabilities offered by external
interfaces

- Internal constituent capabilities necessary to

perform the required operations

It is reasonable to require bidders to specify the

BEST PRACTICES

- System behavior

- Conditions under which the
functionality is offered or denied

Modeling to guide the product
development by synchronizing and
focusing parallel development teams
on simulating product reaction
against real-world conditions,
validating product requirements,
and simulating product functionality

PROBLEM ADDRESSED:

Project cost overruns, schedule
slippage, and compromised quality can
be attributed to immature or
improperly defined user and system
requirements.

REQUIREMENTS:

¢ Clearly documented user
requirements

¢ Validated product implementation

plans
* Prototyping and modeling tools
¢ Updates and refinement over time
STATUS CHECKS:

* Is a customer representative and
user group team defined with
authority to make specific

requirements decisions?

* Are there adequate provisions

ensuring that the requirements are
implemented in the design?

¢ Have functional and performance
requirements been captured in a
technically precise way?

* Are requirements reviewed for
accuracy, consistency, and
completeness?

* Are the system qualities like safety,
security, performance, usability,
learning requirements, and

portability fully expressed?

® Are requirements prioritized, and is
the rationale for the prioritization
documented?

for formal metrics and inspections
on the project.

Aprototype can deliver key
components of the system, but is
seldom more than 20 percent of the
completed system; that’s where the
simulation comes in.

Prototyping has traditionally been a
part of software development but,
under evo lutionary development,
prototyping becomes an essential
initial activity rather than throw-
away demonstration.

Prototypes can help designers find
the difficult parts of the system

sooner rather than later

Prototypes do not eliminate the need

A weighted average o f multiple models produces
an estimate that move precisely represents the

project than the results of any one model.
PRACTICE: ENCOURAGE PROACTIVE
CHANGE IMPACT ANALYSIS
Change impact analysis should be proactive
rather than reactive.
PRACTICE ESSENTIALS:

¢ A change implementation strategy, including
testing metrics and validation criteria

* Processes to cover changes in threats,
requirements, functionality, algorithms,
interfaces, and hardware

¢ Externally mandated and internally generated
changes
PROBLEM ADDRESSED:

The developer needs encouragement to
implement change management, including
prediction, impact analysis, planning, and results
tracking.

REQUIREMENTS:

* Plans for implementation of an approved

change within a systems engineering discipline.

STATUS CHECKS:

¢ Are procedures in place to assess the
operational, engineering, and product impacts
of all planned changes before they are made?

® Is the impact to software of proposed system-
level changes routinely addressed?

Metrics serve to help make decisions about
probable and possible changes.

PRACTICE: PLAN FOR DOMAIN
ENGINEERING IN ACQUISITIONS

Domain engineering expertise is a major
consideration in acquisition strategy options.

Domain engineering is a complex process of
analyzing and modeling a domain, designing and
modeling a generic solution architecture for a
product line within that domain, implementing
and leveraging reusable components of that
architecture, and maintaining and updating the
domain, architecture, and implementation
models.

PRACTICE ESSENTIALS:
* Domain analysis, including:
- An underlying theory and model

- Analyzing a domain according to the model
and reuse of systems

- Use of development histories as data for
management systems

- A set of work products that approximates a
specific domain or adapts to a particular
organization

* Domain design, including:

- A Domain-Specific Software Architecture
(DSSA) that specifies components,

BEST PRACTICES

interfaces, and rules to compose

systems
- Rationale for component selections

* Domain implementation of reusable
software components that will fit
the DSSA, use of components built
for another system build on DSSA,
and ensuring the reusability of
those components

* Domain maintenance, including:
correcting and enhancing domain
assets (model, DSSA, and reusable
components), and experience
(positive or negative) with
domain assets for support
systems development

PROBLEM ADDRESSED:

Lack of an agreed-upon basis for
developing sets of related systems that
incorporate systematic reuse of COTS
and other software assets causes
excessive cost, schedule delay, and

poor quality.

REQUIREMENTS:

* Stable product line for valid domain

engineering use

* Sufficient number of systems built in
the domain to justify development of
domain assets

* Access to personnel to provide

domain expertise

S1ATUS CHECKS:

* How is the domain-specific
approach to system acquisition being
pursued?

¢ Has return-on-investment analysis
been performed on candidate

domain engineering investments?

* Is funding available that could be
targeted to domain engineering
activities, either before, as a part of,
or concurrent with, one or more
specific system acquisitions?

PRACTICE: ENCOURAGE USE
OF CLEAN ROOM
TECHNIQUES

The Clean Room process provides a
rigorous engineering discipline within
which software teams can plan, specify,
measure, design, code, test, and certify
software.

PRACTICE ESSENTIALS:

* A specific set of managerial and
technical practices for developing
ultra-high-quality software with
certifiable reliability

* An engineering discipline in which
software developer teams:

- Apply rigorous mathematical
notation to specify, plan, develop,
and verify software

- Utilize statistical quality assurance for defect
prevention
PROBLEM ADDRESSED:
An undisciplined project environment can
impede the development of high-quality software.
REQUIREMENTS:

* Formal specification and design that rely on
disciplined engineering practices

* Software reliability engineering to measure
software reliability and enforce process
improvement

® Formal verification that compares specifications
with the operating software

* Engineering activities separated into
specification team, development team, and
certification team

StaTtus CHECKS:

¢ Have Clean Room practices been considered
for adoption on the project?

* Has a trade study been conducted to evaluate
and document the advantages and disadvantages
of Clean Room application?

far only been realized in limited areas of

bave not been proven in such areas as:

* MIS projects

The benefits of Clean Room techniques have thus

software development. Clean Room techniques

® Object-oriented analysis and design

o Client-server applications

PRACTICE: ENTERPRISE PRACTICES
TAILORED TO PROJECTS

The positive results achieved by commercial
software development can be altered to meet the
needs of government programs. Procedures and
tools must have a supporting infrastructure
within the organization.

PRACTICE ESSENTIALS:

* A library of accepted and tested Best Practices

* The organization’s view of how to develop
and/or acquire software

PROBLEM ADDRESSED:

"Too many software-intensive systems are
developed on an ad hoc basis, causing
performance failures, missed schedules, and
budget overruns.

REQUIREMENTS:

* Knowledgeable group of software experts
available to tailor policies, practices, and
procedures

* Rigorous adherence to Best Practices by project
members with encouragement from the project
manager

BEST PRACTICES

S1ATUS CHECKS:

* Does the organization identify and
promote its own development Best
Practices?

* Are those organizational practices
specified in a manner to facilitate
project adaptation?

* Are software experts available to
support the adaptation of those
practices?

PRACTICE: ENCOURAGE USE
OF SOFTWARE
DEVELOPMENT STANDARDS
SUCH AS MIL-STD-498

Standards are essential to the stability
of organizations and processes.
PRACTICE ESSENTIALS:
¢ Detailed requirements for:

- Safety, security, and privacy

- Project planning and management

- Development environment

- System requirements analysis

- System design

- Software requirements analysis

- Software design

- Software coding and unit testing

- Software/hardware integration and
testing

ST
it o)

- System acceptance testing
- Software CM

- Software product assurance
- Software quality assurance

- Risk management

PROBLEM ADDRESSED:

When many people, disciplines, and
tools coexist on a large project,
everyone must learn and follow a
common way of doing the same tasks.
REQUIREMENTS:

* The product life cycle definition

* Software development processes

* Reusable software components

StATUS CHECKS:

* Are documents clear at the program
management level?

® Are documents constructed from
templates?

¢ Is standards definition under the
control of an experienced expert?

Discipline is required to write,

review, and cary out the plan for a
complex software product and, to
that end, MIL-STD-498 is better

than previous standards.

PRACTICE: ASSESSED
ORGANIZATIONAL EFFECTIVENESS

Key criteria to evaluate both the acquisition
organization and the contractor organization for
organizational effectiveness should be established.

PRACTICE ESSENTIALS:

* Criteria for assessing the acquisition
organization’s effectiveness, including:

- Commitment and acceptance of responsibility
- Accountability

- Simple hierarchy that allows the project
manager to address one chain of authority, to
influence it, and to obtain recourse if needed

- Technical support

- Mechanisms for process improvement

* A model for assessing organizational maturity
such as Software Development Capability
Evaluation (SDCE), AFMC Pamphlet 63-103,
SEIL

¢ Criteria for assessing the contractor’s
organizational effectiveness, including:

- After contract award, a customer/contractor
Integrated Product Team (IPT)

- Evaluation instruments such as the SEI
Software Capabilities Evaluation (SCE) and
the AFMC Pamphlet 63-103

- Evaluations performed by someone with
experience in the specific application area

- Reevaluations performed throughout the
development project

PROBLEM ADDRESSED:

Risk reduction is achieved by selection of a
capable offeror, and early and continued visibility

into capabilities.

REQUIREMENTS:

* A fully capable offeror with the capacity to
develop software consistent with the Request
for Proposal (RFP) requirements

¢ Early, comprehensive visibility into the offeror’s
proposed capabilities

* Continued visibility into the developer’s actual
implementation after contract award

¢ Continual productive communication between
the program manager and the contracting
officer

STATUS CHECKS:

* Does the development process provide
smooth transitions of personnel responsibility
and assessment of personnel adequacy as
deliverables move through the development

process?

* Are engineering checks and balances in place to
identify personnel shortfalls before productivity
is adversely affected?

Organizational effectiveness in knowledge-
intensive software development organizations
depends on teams of individuals.

CHAPTER ©

BEST PRACTICES

6. PROCESS IMPROVEMENT BEST
PRACTICES

Process improvement is in itself a
process that:

* Starts by identifying the strengths

and weaknesses in an organization

* Analyzes the options to capitalize on
strengths and improve weaknesses

* Plans a process improvement
process

* Monitors and reports on results by
improvement plans

Process Improvement Best Practices
include:

¢ Identifying and Fostering
Sponsorship

¢ Establishing and Maintaining the
Framework for Process

Improvement

* Assessing and Reassessing an
Organization’s Process Capability

* Developing a Software Process
Improvement Plan

¢ Institutionalizing the Software
Process Improvement Plan

* Closing the Loop for Software
Process Improvement

PRACTICE: IDENTIFYING AND
FOSTERING SPONSORSHIP

Project sponsorship ensures successful long-term
process improvement activities.

PRACTICE ESSENTIALS:

* Specific tasks that sponsors must perform to
ensure that the initiative has appropriate
visibility throughout the organization

* Communication of the business reasons for
process improvement throughout the
organization, one-on-one, in small groups, by
department, and company-wide

¢ Cascading sponsorship through commitment
expressed at all organization levels
PROBLEM ADDRESSED:

The commitment to sponsorship of software
process improvement by program and product
decision makers is often lacking.

REQUIREMENTS:

* Goal setting at every level of the organization

* Scheduled process improvements inspection
including progress reviews, assessments, and

evidence of improvement

¢ Resources that include but are not limited to:
time, people, dollars, and equipment

* Personnel systems that recognize and reward
behaviors beneficial to the project

S1ATUS CHECKS:

* Does top management act on feedback about

project conditions?

* Do team leaders act as sponsors for their
teams?

Sponsorship should be rewarded.

PRACTICE: ESTABLISHING AND
MAINTAINING THE FRAMEWORK FOR
PROCESS IMPROVEMENT

A software process improvement framework
should be established and maintained for all
software acquisition.

PRACTICE ESSENTIALS:

¢ Adoption of a model or framework of tailorable
templates for standards, operating procedures,
techniques, tools, and education/training

PROBLEM ADDRESSED:

If an infrastructure for software process
improvement is not established within an
organization, software process improvement will
not become part of the engineering group culture.

Groups, not individuals, are better recipients to
reward, as championship teamwork is the goal.

BEST PRACTICES

REQUIREMENTS:

* Organizational support for a
Software Engineering Process
Group (SEPG) to serve as a focal
point for software process
improvement initiatives

* Official recognition of software
process improvement efforts

e A source of measurement and

feedback

* A provider of training

S1ATUS CHECKS:

® Is the framework established and
communicated to individuals on
the project?

(e
NOT

to aproblem is too late.

PRACTICE: ASSESSING AND
REASSESSING AN
ORGANIZATION’S PROCESS
CAPABILITY

Organizations must establish a
specific repeatable means to assess
the strengths and weaknesses of
their software development
processes.

PRACTICE ESSENTIALS:

® The reason for assessment (for

Process improvement in response

example, source selection, the start
of a major process improvement
effort, periodic evaluation)

* Quality models against which the
software development processes
will be evaluated (for example,
ISO 9000, SEI’s CMM, SDCE)

* Methods based on available
resources and their allocation (for
example, CBA-IPI is more
expensive and detailed than SPA,
which is more expensive than a
mini-SPA)

* Bench-marking criteria to evaluate
the organization’s processes

Determination of progress against
the process improvement action
plan and established relative to the
quality model

PROBLEM ADDRESSED:

Organizations without repeatable
means of identifying current
capabilities cannot identify and
improve problems.

REQUIREMENTS:

* Management’s visible commitment
to act on the findings of the
assessment

* Comparison of software

development practices with

practices of other organizations in order to
identify and adopt the best-in-class practices
STATUS CHECKS:

* Are periodic assessments of process capability
conducted?

* Are strengths and weaknesses listed?
PRACTICE: DEVELOPING A

SOFTWARE PROCESS IMPROVEMENT
PLAN (SPIP)

A Process Improvement Plan (PIP) should
support business objectives, identify
organizational strengths, and improve
organizational weaknesses.

PRACTICE ESSENTIALS:

* Goals based on business objectives

® Process strength and weakness assessment

¢ Continued improvements over time

PROBLEM ADDRESSED:

Lack of a carefully thought-out and clearly
documented SPIP results in false starts and
conflicting activities.

REQUIREMENTS:

¢ Development reviews

* Active senior executive sponsorship

* Short-term goals to highlight early successes

el
SETNE

* Visible reviews of periodic progress

STATUS CHECKS:

* Is the business need for the system or
enhancement clear to project personnel?

program.

PRACTICE: INSTITUTIONALIZING
THE SOFTWARE PROCESS
IMPROVEMENT PLAN

To be effective a Software Process Improvement
Plan (SPIP) must be formally established
throughout the project.

PRACTICE ESSENTIALS:

* Writing the process improvement action plan

* Acting on the process improvement action plan

* Assessing results

PROBLEM ADDRESSED:

Action plans are of no use if they’re only
developed and not effectively carried out.
REQUIREMENTS:

* A high-visibility kickoff

* Empowered software team leaders

* Rewards for process improvement successes

* Organizational awareness and conformance

Plan implementation should be tested in a pilot

BEST PRACTICES

S1ATUS CHECKS:

* Are concerned project members
aware of the software process and
its progress?

* Are views of product progress
available and current?

The SPIP is only as good as its

encouragement and enforcement.

PRACTICE: CLOSING THE
LOOP FOR SOFTWARE
PROCESS IMPROVEMENT

Process improvement requires
continuous iterative feedback to all
vested parties.

PRACTICE ESSENTIALS:

® Measurements throughout the
process improvement effort,
including system cycle time,
reassessment results, and training
resources spent as planned

* Feedback on process improvement
progress available to all
participants in the software
improvement effort, including
sponsors, software engineering
process group members, process
engineers, support and steering
committee members, senior
software technologists, and all

practitioners

PROBLEM ADDRESSED:

In the hectic environment of a
software development project, good
practices can get lost in races to
impractical, sometimes impossible,
deadlines.

REQUIREMENTS:
* Maintaining a current process
asset library

Status CHECKS:

* What is the status of the highest-
priority Process Improvement
Plan?

fgﬁ\ Like all communication, feedback

is best when clear and concise.

7. SOLICITATION AND CONTRACTING BEST
PRACTICES

Solicitation and contracting goals include:

* Delivering a system that works well in large-
scale software developments

* Aligning government employees’ and taxpayers’
demands for value

¢ Eliminating wasteful paperwork and outdated
procedures

* Using criteria-based incentives

Solicitation and Contracting Best Practices
include:

* Management of COTS, Reuse, and Emerging
"Technologies

* Employing a Customer/Contractor Integrated
Product Team (IPT)

e Use of Periodic Demos

¢ Utilizing Software Development Capability
Evaluation (SDCE)

BEST PRACTICES

PRACTICE: MANAGEMENT
OF COTS, REUSE, AND
EMERGING TECHNOLOGIES

The government/contractor team
should agree to a process that
rewards competence and allows risk
to be managed when Commercial
Off-the-Shelf (COTS) software,
reuse, and other emerging
technologies are to be used on an

impending procurement.

PRACTICE ESSENTIALS:

* Rewards for achieving emerging-
technology goals expressed in fee-
sharing formulas accepted by a

joint customer/contractor team

* Federal Acquisition Regulation
(FAR) clauses that enable use of
emerging technologies

* Risk mitigation approaches that
are compatible with:

- User requirements
- Contractor competition
- Negotiated rights of ownership
and their criteria
PROBLEM ADDRESSED:

The overall goals of COTS, reuse,
and use of other emerging
technologies are to reduce cost
and/or improve quality.

REQUIREMENTS:

¢ Focus for COTS, reuse, and
emerging technologies on:

- Cost avoidance
- Schedule reduction
- Quality improvement

* Solicitation clauses and contract
terms and conditions with
specifications concerning
emerging technologies

STATUS CHECKS:

* Has the overall project cost been
reduced (although initial cost to
develop reusable assets is higher)?

e Has time to market been reduced
because there are fewer new assets

to build?

® Is quality higher because reusable
assets and COT'S are more stable
with fewer errors?

PRACTICE: EMPLOY A
CUSTOMER/CONTRACTOR
INTEGRATED PRODUCT
TEAM

A customer/contractor IPT should
be established and sustained to
improve communication on all
projects, to define the risk issues,
and to define responsibilities
relevant to the identification and

mitigation of risks that affect cost and
schedule growth.
PRACTICE ESSENTIALS:

e Members who are multifunctional and

experienced

e Alternates to stand in for members who cannot
attend meetings

® Preferred mechanisms of communication
identified and established within the IPT to the
rest of the project organization, and from the
rest of the project organization to the IPT

® A defined charter with goals and responsibilities
clearly stated

* A team for each key program area or risk

PROBLEM ADDRESSED:

Members of different organizations must
compete for resources, which can generate
conflict.

REQUIREMENTS:

* A risk management team that begins pre-
contract award and is maintained throughout
the project

* Prioritized risks associated with equipment,
software, and facilities
STATUS CHECKS:

* Are viewpoints other than the project team’s
involved in the risk assessment process?

oo

¢ Is the IPT able to conduct an assessment of
progress and risk without additional data,
analysis, cost, or extension of the schedule?

= IPT members must be straightforward in

after IPT meetings, and with all functional

areas—no hidden agendas.

PRACTICE: USE OF PERIODIC DEMOS

Periodic demos can reduce risk, especially during

solicitation and procurement phases of a contract.

PRACTICE ESSENTIALS:

* Demonstration of unrealized product functions,
operations, and interfaces

PROBLEM ADDRESSED:

Proposed ideas are more easily evaluated when

they are visible.

REQUIREMENTS:

* To make proposed functions visible

* To show contractor’s ability to use proposed
technologies prior to contract award

STATUS CHECKS:

* Has the proposed technology been successfully
demonstrated in a representative operational
environment?

* Has the proposed technology been successfully
integrated in the evolving program?

communication of intentions before, during, and

BEST PRACTICES

* Have product functions been
evaluated in a critical item test?

During software development,
risk items identified in the
Request for Proposal (RFP)
should be mitigated through

critical item demo testing.

PRACTICE: UTILIZE
SOFTWARE DEVELOPMENT
CAPABILITY EVALUATION

The Software Development
Capability Evaluation (SDCE)
methodology provides a structured
approach for assessing an
organization’s capability to develop
software for mission-critical

computer resources.

PRACTICE ESSENTIALS:

* Methodology for soliciting a
contractor qualified to develop
software in accordance with
requirements

¢ Evaluation of contractor’s

technical and management process

to ensure consistent execution at
the highest level possible
PROBLEM ADDRESSED:

Contracts are awarded to bidders
based solely on proposals that, in

many cases, do not provide insight
into the contractor’s actual capability
to develop the specific software
needed for the project.

REQUIREMENTS:

* Professional team with in-depth
experience in software acquisition

¢ Professional team with experience
in key project domain areas

S1ATUS CHECKS:

e Is there a commitment to use of

SDCE?
* Is an SDCE team in place?

® Has the SDCE been tailored to
the specific project?

As defined in Air Force Materiel
Command Pamphlet (AFMCP)
663-103, 15 fune 1994, SDCE:

® Was developed with industry as
apartner

o Is independent of military and
industry development and
management standards

® Focuses on the specific needs of
the specific acquisition program;
for example, it must be tailored
to meet specific program needs

RS h—._n_uﬂ. b L._Jﬂ._

.-H_I_I_uﬂ‘lﬂ..}_ .u...__..uu_u:m

pmunfiounyy ofunyy spewesnhboy

SR

alfnmans, pwsbou ey uq.-u..-_.”..m_..uU

P

a0 wispess o A

{ A RAL o RpaE s, P soipayLe gy, samumdan

LD 00 STIN0E J0Ag

DUl 200400 POpIy- S0 athen T,

3| () (34

Buigs) uwemadliog

X
X
b4

By B

AP A0 00 T MY DA

000 sEADU Y Duissuliug pussy

M (0| 30

EOLHFDHE o] LD AT -DINES

Lyt

SEBO0,| LAMUNECS | O G PR -0 b Eoepog

SR by D

Basintoy Apsipw

AU A0 WIDE] AT

LN D LU DD w905 O A BRI

SOMHEp uD iy [0 poug aBoumpy

sy P Buspou] iy sopuaey

gD g FI FOOTARIIC T W

FUTEIDNT] WY DR LIk eg L |y

Encrh fing) P cac i o Mt hamiarm

Paople-Aware Manadsasant Acoouita kil iy

ConBiguration Mo Evany

Binvary G@ualsy Gotos arshe Inde Pebble Lowal
Matrics-based Scheduling and Monodeme

Ddect Tracking Agoimt Guoliy Targens
Programewids Visibilty of Pragress va. Plan

Forneal insprocions

SLIVHY 153 TWIININg

M grammend an infsrfoces

Farmm! Bk Manaflemen

UTHN OO I 0 soamsny pouwebounyy woos g

VINY INTWED VMY L0 AB SIDILVH 4 1S3g

FIGURE 6.1 RELATIONSHIP BETWEEN PRINCIPAL BEST PRACTICES AND BEST PRACTICES BY PROJECT MANAGEMENT AREA

IE] wolEnEay Agpqodon, asusdopp s aowgog o3)Ig:

SOURY] JPOLEN JT Y

v pelosg pepubo| Spoguon fawEeEn o Arpdwl

sarbiopoupe) Gulowy pup osney g 00 jo sewabounyy

wunsoadug SFI00a4 A eyos Ky oo sy Bumo)

Uy e s dug) PRI aunwgog oy Bumpuonng sy

Ly PO 10U TR DIDSEDG O _.mn__..nomﬂn...ﬁ

Appng) ool 5 usimounbog ue m_...u.m.nu_“a...m._.._.”._...:nﬂ._._.

oo w0 oy wraaioag 30y WML YR _.u_u_u_n_,.__n..__,.._...m.:_h._,.._ubn.,

2| 3¢ | 3¢ | 3¢ | e o [>¢ | (5 |5

dnm.osuodg Buesoy pum mru_..m__h_u_".

U apay g puspausbyy By

SIS W=D e
SR . G smmyos §3 e afinanooug

' 0 P |iD] WOpn) s Sy

senbipe) umay uss|s jo o) sBounoug

|5 |5

sunepspnbory un BussouiBuy wowe oy wopg

sEdnuy ooy ofuny Ty o spooig afsenooug

SUD G, UD 5 oy SaElioe g o espy

sapng | g essesy Bussuifug spousanhay sfisunoog

SOUGRUIDYY PUD L FUYD] R0 U5y S sloaoog

sporyRe iy ulinmy pun serdpung s oo Ty afianooug

woa pedng fpswasnbey pREFEEEE] N B S R Ipep

CHAPTER ©

BEST PRACTICES

* Relies on and encourages use of
offeror’s internal so ftwear
development processes

® Requires evidence of past
performance

* Requires no Request for
Proposal levels for source
selection

o Solicits and supports contractual
commitment to the offernr’
proposed software develo pment
processes

In the event that a program manager desires additional information, the Network
will provide both source materials and access to experts. We would greatly

appreciate receiving your comments and suggestions (preferably by e-mail).

E-MAIL: BEST@SPMN.COM PHONE: (703) 521-5231 FAX: (703) 521-2603

-~ bl B sl Tl i il I i S L iRl " minle! i |

UDF R

b | SIS W AJ[OND) IoHRpe)]

Aojapogp w mEpe

pmsmbioan wy sbunuyy spsumanbay

x|

aiinmany prwsbouniy uoupanBpees

x ¥ ¥ XX X ousgm wsmdwes s g Apeen

[A ALY AT, P Loy Lo, pepudap|

»

L0 0] B0 2]

X
¥ Buspm| ammyos pop iy s poumos
X
.1

Buspe) vomrnadiny

ABoppoypyy Fog

X ¥ | x MR LS00 T VAT B D]

X 159004, 5y Buumeuiiug pue)

X ¥ix ¥ | ¥ X | ¥ FNTEDGY U TR
¥ix X|w FEITO] LSRN) DANSG05 PRS- Pt BHETY

X Fpuunanbey TEy]

X X X By Apaey

x ST AT A DO U]

¥ W ¥ X! X ¥ % UTEIO g A T EILULE 3 ALY T B AT

¥ = punpun g [l 4o sodus oiounyy

matamng pu Buppos g szpousy

mawnbouny wgy smnu e wiopey

FUDIFIGY] WERY POSO-so L g s

3 | | |
3 | | |

UDIIEED R S0y DAY AUSEOUD I yFon 5]

SI3MDVHg 153G

Gonoral Applicasiorr Mo Savts tmpact

Aggregato Requironents Growih
Cumulativs Famed Value Delv ered

Dabucts by Aclivity

Risk Labday

Risk hinpacs

Crverfime Hours
Wadurtary Tusnaier
Gualiy Sotes Prodross
“ Abba Chart™
Cumulative Dal lars
Cunsulative Months

VR S

Tosks
P
=0]

SON WD 1MV TOUINDY

FIGURE 6.2 RELATIONSHIP BETWEEN CONTROL PANEL GAUGES AND BEST PRACTICES

[2oa5] weenmag Appqedesy pewdopes mosges 2240

SN HPDLR 2 05

wrn| pelvsd pepdie g o poiassy JoewegnT b Aopduy

safiopuype| Gullnwg puo mneg Ta0n o uewsiouowy

s Az S5500 Ba0mEDG a0y doo] gy m_..“.o_n_

LIS SIOFUL A0 D COCH TR U.._u....llu_d.w U.l_u. Aoz _ﬂ‘..ﬁ._...-_h.h:_

LR 4 SUENLEEN AT J O .“..uu....u..-m.n.hu.iluum o e DAD]

Apone Feocosy U pountiag uo Bussssooy fHusseany

pmwaszsdu wifiony 0 eI 4 Bunsnpeo B LFR]OE]

(| 2| | e e R | e | (]

dygssosuods Bupapoy puo Bu

ssaumapay] puolpamin Busiesiy

|

BEI-OE-IW = P

SUDPUGE Eudofaaag] 2iowmgos po sy sboinosug

5 ERinS O PRIGED | FTPoag s ld g

TR D] WaTy DR o 6y aboumoug

suo gsinbony 1 Busmefiu 3 umueng sy unyy

||

s dpuy podhi sfuoyy @ spoosg sBosmsug

FUSLE| UG pui s@peyy eddmy g e

sepnE Pyl sy Buimsubug s pemsennbey aboumoug

SOLTHIB GG] PUI USHZULACT SINESUR Iy m mgog aboimoug

spoypyy wra g pun ssedouy apqisdwosy sbosmsuy

JE T T

e

CHAPTER 7

PROJECT CAVEATS

PROJECT CAVEATS

The following software management caveats are lessons learned
from software and hardware/software projects gone awry.

1. Don’t expect schedule compression
of 10 percent or more compared with
the statistical norm for similar

projects.
Calendar
Schedule . Time Scheduled
Compression =4 1.00 - [—————
Percentage NOmlna!
Expected Time

Nominal Expected Time is a
function of total effort expressed in
person months.

2. Don’tjustify new technology by the
need for schedule compression.

T Lk

% New technology is any tool or

by the staff and management of the
cument project.

3. Don’t force customer-specific
implementation solutions on the
program.

internal design, hardware/so frwar

partitioning, reuse plans, etc.

4. Don’t advocate use of silver bullet
approaches.

A new approach qualifies as a silver
bullet (as described by Frederick

Brooks in his classic essay, “No

x 100

development method not used befor

Implementation technology includes

Silver Bullet: Essence & Accidence

of Software Engineering”) if it

claims to have a 20 percent or
greater effect on productivity and is
as yet untried by program staff on
projects of the same size and scope as
the one they are about to undertake.

5. Don’t miss an opportunity to move
items that are under external control
off the critical path.

When possible, schedule external
dependencies that are on the critical
path so that their impact on the

project is lessened.

6. Don’t bury all project complexity in

software as opposed to hardware.

R
‘;5{015 \

During the early stages of project

work, it is tempting to allocate the
portions of the requirement thatear
not yet fully understood to sofrware,
which assures that sofrware will
become the critical path problem as
the project moves toward completion.
No function that is incompletely
specified should be allocated to the
software. Hardware/so ftwar
partitioning cannot be done
effectively unless the specification is
reasonably complete.

7. Don’t conduct critical system engineering tasks
without sufficient software engineering
expertise.

ﬁfgf&\\ Hardware/so ftware tradeoffs cannot be
effectively completed with expertise from only

one of the two areas.

8. Don’t expect to achieve an accurate view of
project health from a formal review attended by
a large number of unprepared, active reviewers.

The review process suffers from diminishing

e
e o1

returns when the number of participants goes
much beyond a dozen. All reviewers need to be
prepared in detail to deal with all, or at least
key, parts of the product under review
Extensive preparation for active participation in
the review should be the entry price for

attendance.

9. Don’t expect to recover from a schedule slip of
10 percent or more without a 10 percent or
greater reduction in software functionality to be
delivered.

So ftware functionality can be quantified in
terms of Function Points or another

specifications-based metric of system size.
Recovery from significant schedule slip should be
expected only when accompanied by comparable
reduction of system scope resulting in reduced

Function Points.

GLOSSARY

GLOSSARY

GLOSSARY

Abba chart ¢ A graph (named for
Wayne Abba) that is composed of four
different indicators showing trends in
historic and projected efficiency to date.
Also known as the Total Program
Performance Chart.

Acceptance criteria ® The list of
requirements that a program or system
must demonstrably meet before
customers accept delivery. Late changes
in acceptance criteria or hidden criteria
derived from explicit criteria cause
problems for software projects.

Acceptance test ¢ A form of testing
in which users exercise software prior to
accepting it for production runs. The
IEEE definition assumes that acceptance
testing will be formal.

Actual cost The cumulative actual
cost incurred on the project to date.

ACWP e Actual Cost of Work

Performed.

Alpha tests ® The first tests of a
product, using real input, when it is still
in an unfinished state. Alpha tests are
usually internal to an organization and
are followed by beta tests.

Architecture ® The structure and
interrelation of a system’s components,
including the relation of the interface to
its operational environment.

Audit * An independent review of
product development and process

execution to confirm that they conform
to standards, guidelines, specifications,
and procedures.

BAC ¢ Budget at Completion.

Baseline ® A specification or product
that has been reviewed and agreed on,
and that thereafter serves as the basis for
further development. A baseline can be
changed only through change control
procedures.

BCWP ¢ Budgeted Cost of Work
Performed (see Earned Value).

BCWS ¢ Budgeted Cost of Work
Scheduled.

Beta tests ® Testing a product in its
intended environment with the results
used for their intended application.

Binary acceptance criteria ® A list
of requirements that a deliverable must
completely satisfy before moving on to
the next activity or task.

Budget at Completion (BAC) ¢ The
total original budget for a project, which
is the maximum value on the Control
Panel Earned Value gauge.

Budgeted Cost of Work Scheduled
(BCWS) ¢ The cumulative planned value,
which is the total value of work that was
originally scheduled for completion by the
end of a reporting period.

CASE (Computer-Aided Software
Engineering) ¢ The industrialization of software
engineering techniques and computer technology to
improve and automate the practice of information
systems development.

Clean Room ¢ A process that uses formal program
specification and verification and statistical software
quality assurance to create high-quality software.

Constructive Cost Model (COCOMO) ¢ A
closely related family of software cost estimating
models developed by Dr. Barry Boehm of TRW.

Code complexity ® The complexity of software
code, usually affected by factors such as cohesion,
coupling, modularity, and module complexity factors
including SLOC, nested loops, global variables, and
GOTO statements.

Complexity estimate ® A numerical prediction
of the probable number of interrelated factors that
cause projects to be viewed as complex. Models that
measure logic, code, and data complexity include the
McCabe cyclomatic and essential complexity
metrics, the NPATH complexity metric, SPQR, and
CHECKPOINT.

Component ® The collection of programs and
modules that perform a single, identified technical
or business function. Examples of components
include the scheduler of an operating system or the
parser of a compiler.

Configuration Management (CM) ¢ The
process of identifying and defining the deliverable
product set in a system, controlling the release and
change of these items throughout the system life
cycle, recording and reporting the status of product

items and change requests, and verifying the
completeness and correctness of the product items.

Contingency factor ® A reserve amount that
companies add to cost estimates and budgets to
cover unanticipated expenses and that acts as a
buffer against estimating errors. Normal
contingency factors would be 35 percent added to
cost estimates produced during requirements, 25
percent if produced during design, 15 percent if
produced during coding, and 5 percent if produced
during testing.

Cost factors ® Parameters that influence the
amount of resources needed to accomplish a job.

Cost overrun ¢ Situation where the actual cost
exceeds the estimated or budgeted amounts on
projects or deliverables.

Cost Performance Index (CPIl) ¢ The Control
Panel gauge that shows how efficiently the project
team has turned costs into progress to date.

COTS ¢ Commercial Off-the-Shelf (often used in

reference to software).

Critical path © The set of activities that must be
completed in sequence and on time if the entire
project is to be completed on time.

Cumulative defect removal efficiency ¢
The percentage of software defects found by all
reviews, inspections, and tests prior to software
delivery compared to all defects found during
development and by users in a fixed time interval,
such as the first year of operation.

GLOSSARY

GLOSSARY

Cyclomatic complexity ¢ An aspect
of the McCabe complexity metric that
looks at the control flowgraph of a
program and determines software
complexity based on the minimum
number of paths.

Defect ® A problem or “bug” that, if
not removed, could cause a program to
either produce erroneous results or
otherwise fail.

Defect potential ® The probable
number of defects from all causes that
will be encountered during the
development and production of a
program or system. Defect potential is
enumerated as the sum of five defect
categories: requirements, design, coding,
documentation, and bad fixes or
secondary defects.

Defect prevention ® Technologies
and techniques that minimize the risk of
human error. Defect prevention
techniques include structured analysis and
design, high-level languages, participation
in Joint Application Design sessions, and
reviews and inspections.

Defect removal ¢ Activities that are
aimed at removing defects from software,
including walkthroughs, reviews,
inspections, editing, and all forms of
testing. For military projects, defect
removal is the second most expensive
activity, with paperwork being the most
expensive. A synergistic combination of
defect prevention and defect removal can

yield dramatic improvements in the
quality of delivered software.

Defect removal efficiency ¢ The
number of defects removed by a specific
operation, such as a code inspection,
review, or test phase, compared to the
total number of defects found during
software development and the first year
of operation.

Defect severity ® Classification of
defects into categories such as critical,
serious, moderate, cosmetic, or tolerable.
Classification may also be numeric,

ranging from 1 (high severity) to 4 or 5.

Deliverable ¢ A tangible, physical
object that is the output of a software
development task. Examples of
deliverables include requirements
documents, specifications, test cases, and
source code. There are also synthetic
deliverables such as Function Points or
Feature Points.

Design ® The tasks associated with
specifying and sketching out the features
and functions of a new application prior
to formal coding.

EAC ¢ Estimate at Completion.

Earned Value (EV) ¢ A means of
evaluating budgetary performance by
relating actual expenditures to technical
achievement as measured by a milestone
accomplishment scheme. EV may be

used interchangeably with BCWP.

Effort ® The person-months or person-years of
work by all job classifications on the software
product (design, coding, inspection, testing,
documentation, and supervision).

Embedded software ¢ Software for an
embedded system. An embedded system is integral
to a larger system whose primary purpose is not
computational; for example, a computer system in an
aircraft or a rapid transit system.

Error source location ¢ The backward
exploration of the cause of an error or defect from
point of occurrence to ultimate reason.

Estimate at Completion (EAC) ¢ The
maximum value on the Control Panel Actual Cost
gauge, which represents the current best estimate for
total cost of the project.

Function Point (FP) ¢ A unit of measure of
software size based on owner and user requirements
stated in the requirements specification.

Gantt chart ¢ A chart (named for Henry
Laurence Gantt) that consists of a table of project
task information and a bar chart that graphically
displays project schedule, depicting progress in
relation to time and often used in planning and
tracking a project.

Inch-pebble ¢ The lowest level of an activity
network consisting of a defined pass/fail task that can
be accomplished within a short period of time, such
as two weeks.

Independent Verification and Validation
(IV&V) e Verification and validation of a software
product by a group other than the one that created
or implemented the original design.

Inspections ¢ Visual examinations to detect errors
and standards violations in requirements, design,
code, user documentation, test plans and cases, and
other software development products.

IPTs e Integrated Product Teams.

Interface ® The boundary between two programs,
two pieces of hardware, or a computer and its user.

Joint Application Design (JAD) ¢ A defect-
prevention technique determining requirements for
a software project through structural, joint sessions
of users and developers.

Kiviat graph ¢ A multifaceted graphic
representation technique used to display the results of
many changing variables simultaneously. Kiviat graphs
are used to display productivity, quality, and other
targets together. The graph appears as a star-like set
of lines radiating from a central point. This central
point provides the zero point or origin of the lines,
each of which represents a norm for a particular metric.

Main software build ¢ A stage in the project
life cycle, following functional design, that begins
with detailed program design and continues through
coding and system testing until the system is
operational.

Manpower buildup ¢ The rate of building up
personnel on a project. This should match the rate
at which the project leaders identify problems and
assign them to the staff.

Maximum development time ¢ The limit
beyond which it is unlikely that a project can be
successfully completed.

GLOSSARY

GLOSSARY

Metrics ® Means by which software
engineers measure and predict aspects of
processes, resources, and products that are
relevant to the software engineering activity.

Minimum development time °
The limit below which it is impractical to
attempt to develop a system given its size,
level of productivity, and rate of
manpower buildup.

Peer review ¢ A type of review that is
conducted by peers to evaluate a product,
such as a segment of design or unit of
code. Peer reviews may be formal or
informal. Walkthroughs and inspections
are often conducted as peer reviews.

PERT chart ¢ A chart (resembling a
flow chart) in which a box represents each
project task, and a line connecting two
boxes represents the relationship between
two tasks.

Process productivity measure ¢ A
measure, obtained from past projects, of
the effectiveness of an entire project or
organization in developing software.

Product functionality ® The number
of Source Lines of Code created. This
value is calculated using models for
estimating size.

Productivity ® A measure of the
amount of Source Lines of Code that can
be delivered per person-month.

Program documentation
All on-line and hard-copy information

supporting the system’s contractual
agreement, design, build, operation, and
maintenance.

Prototyping ¢ A process in which
partial versions of a program are created
to aid in designing the final product.

Quality ¢ The totality of features and
characteristics of a product that bear on
its ability to satisfy given needs.

Quality assurance ¢ All the planned
and systematic actions necessary to provide
adequate confidence that a product or
service will satisty given requirements for

quality.

Quality gate ¢ A predefined
completion criterion for a task including
audits, walkthroughs, and inspections,
that provides an assessment of progress,
processes used, and project products.

Rayleigh curve ¢ A roughly bell-
shaped curve that represents the buildup
and decline of staff power, effort, or cost,
followed by a long tail representing staff
power, effort, or cost devoted to
enhancement or maintenance.

Regression testing ® Selective
retesting to detect faults introduced during
modification of a system.

Requirements growth ¢ The
increase between baselined and current
documented requirements.

Reuse ¢ The ability to make additional use of
standard parts or components such as reusable code,
design, architectures, and test cases.

Review ¢ An examination (formal or informal) of
the specification, code, or another deliverable from a
software project.

Risk ® The probability that a software project will
experience potential hazards that will affect the
schedule or completion of the project.

Risk reserve ® Money and time held in reserve
to be used in the event that risks occur.

SAC ¢ Schedule at Completion.

Silver bullet ¢ A single tool or method expected
to significantly improve software productivity.

Size ¢ Delivered, executable SLOCs. Comment
statements or blank lines are excluded from the size.

Slip ® The amount of time that a deliverable or
product is late from its originally scheduled date.

Source Line of Code (SLOC) ¢ A physical line
(non-comment, non-blank) of deliverable source
statements.

Stakeholders ® Pcople, organizations, and
existing systems that are affected by, or that
influence, the proposed system development or
enhancement, including the customer and users.

To-Complete Performance Index (TCPI)
The Control Panel gauge that shows the future
projection of the average productivity needed to
complete the project within an estimated budget.

Total quality management ¢ A method of
removing waste by involving everyone in improving
the way things are done. Total quality management
techniques can be applied throughout the company,
and are equally useful in all departments whether
production- or service-oriented.

Voluntary staff turnover ¢ A measurement of
employees the project wants to keep, but who have
chosen to leave.

Walkthrough ¢ A review process in which a
designer or programmer leads one or more
members of the development team through a
segment of design or code that he or she has
written, while the other members ask questions and
make comments about technique, style, possible
errors, violation of development standards, and
other problems.

Work Breakdown Structure (WBS) *

The product- or activity-oriented hierarchy tree
depicting the elements of work that need to be
accomplished in order to deliver an end product to
the customer.

115

APPENDICES

BEST PRACTICES INITIATIVE BACKGROUND

T P bW THE BECTRET Ay £ IDEFCHER

[P EEL B Wl Bl P L FR B
GEL 2Ry

AEERADL AR FLIAS 20 SECRETA LTS £ THE R EARY DEPARTNENTS
ATTH: SEHACE alC ISTTION EXEUIIIVES
VICE CTARN AN, FIRT C3EER OF 51 AT

BURIRCT: Sntlear Acceimsas Biosn Fracioss Tikaivs

st Taol) oolluace socuisilion pfoclons Beve of parer [provice angileiag
Trrmonnrk S meansgings o aoquizhiEn 0 Iarge-tozie softwene soveiopomad anilmazriomante
preprrras thl fue 2 esceniad par of ot inrordingly NPl WRIITMS AERILIA. Ajlnnzeh mine
cxedlant prectipes f afTasvely managisg such proganeg et i boln indastoy drd gy Letment,
shecie padersanding nod 457 WA gor saltwar agquiathan eadraas is na wigesresE Tik
Apiid i, VRS memaraedis S e F‘.:l:.t-:l-.w.:'-.-:q-:-iﬁ:ic-n’rrvys-m tmbegzatier JUED ALY
alezned Sereics Adndutinn Sreniees b 1 dinpeamanon of SRcgralng Beie pradices jnh flaor
ertlwszss poElLiting: OriotEes.

e share By comosing, gad mgethce Tavs exnléisked te Tifhaiart A cgnisirias fesd

Fracives et 3 ImERive a0 [psinnhiie sul sileare Esien TIAGELRIS SI0REs
He prginges of e snshafive $12 0

Forws e [holesse angusilin consmnazsy a eazdoyingeiioriie,

[l leurrsae s 7 ki CannZ o ent Fesizies,
Exaliy Frogosn Managers o lacus heir selivnrs marseasbii 31505 nn

pusaleizing, ad py andtaame, eatlisr than o activizes shreced owands

Rifisfying fepsd 2linag Bk Mo g Bnazsiorly eovaphes ower e
& Trable Mg Mansgers @ exescize Royibitity b irplnenling Besl

Praclicez wallls Ssfian cxmarmeand pepsn ko, and,
Frpevhile Srgmman Momnpers snd stallwildl o triiaing ace? K e ATy

s eFhzlvaly uzn and wehicwe the hrrofise o theer practics

Titds Jaizhalivg Wi ideridy pravices s b sicerasiol softeent plisieors £are both
croranient ind wdussne, 2nd will enptand apd suppar the o flmesg s oedeway by ke Jaftivan

Prrocpoazr, 3dntegers Mribirk 12 igerstly and eosvey shise praciuiee, Thiere aractizes srote be
dfiind s ot Bl prncticgs, The [Jeferse Augdsiiion Manpremenl prados, mariged ande
R A 2, Al ROEQ, el e parocialcd nroprEaL el edesaun Wil be it
g0 e eplivey inplaaszs sthen, Seeccesiuily arzarpl-shing this Aiative § fndements) 10
ailinring i aosichy aoeded improeemealis 0 ool LITRIRG AN EITNG PRACTRES.

Tlue izcutar, Test 2ed Fealuaticr, £0%55 EAETY aniftse Dypoty Azaisise Seereary
10031 Acowsiziivn} are dirceiedd 1 oinly dnlign. ingler, sl aninpe e imrizrive, §esse
Sarzamgidt 3 SamECRiaLive NavIg HE i o S diosl v saraeiey bapeesiale
Piysrmnt izeal 4 50 softwace eveRRcEL FeTl: B PR Ik fortalicg and
imipfemrting dhis itisteee. Provige sar dease's nane, shene nnd ffeemg e Dely 29, TERS
10t Eaeregtar, To%: omt Evalsalaa, DUST AR T Please fi;fﬂ'ﬁ rratioe s b et s
Tenaminalor, Meenn Doy, Sl 2355 in-mail abrewsdhadz nays ol

Gt o,

hign? Londehanre Zramed] Pape, Jr
Linde) Ry abunhens FAsrEEERR Seziezary o Dz
(A puimilios ams Teshredaey) (Acling: fmrnsine Comml, Conneriaisag,

Mol Tpteilizaman’

QFFICE OF THE UNPER SECRETARY QF DEFENEE

00 THEFEMEE SENTAGCH
WABMHIATM 156, AT F- ROy

" 1oy

MEMOEANTIN FOR SERYICE ACURSTTICN FAREUTIVES
P TLAAL LEAN AGTTIS

SUREET: Softwars Acquisiion Mamepemest " et Proviios”

Softvars 2as chardy herohiet 4 majer ons, sadsle and MrEorhence griver of
vitailly af o Our wenpies. oosnas & woaral el iedormaio: sestews, My
of tiese programi can beoefilthrusgh efieeive gt of "Bead Proetices” staepsidly
TeiEg used in DO wnad inubusins large-seals sofivere mlemsive prograos
Wrdtspread UNOTSIAndiNg Wl STPropsiaw oifocove we of such preestoes Is
emiemdiy) 1o sclieving the NewmiRIry SuSIIRGS IEPSWATRRR] F RMIWESE SRR
THAEgE o,

brrvist Aegnibition Erecuoves ind Progrom Bxemtve Cfficish o somiribez
presiy by auupsEng oeassoey wlitl craplasicc sidlueiour OF sz Sl piedives i
Uy ECqueistich MAra@anenr prooss Ad sumiilig el sy lsedp b dhis Tegand,
Tuw sttachedt 3 rreck s of xrehe of dhe eceendiad e eraetless which 2re eemersiy
HPPIPEEE 10 Sintive pogeiiion managesant af lage-soeie, sofwars imtensave
FYEIEETS.

‘Bre Spitware Brogren Mavggers Nelwork {Sseriied in e akached ASENCH)
memomstrn of Bey ¥, T3 3 e wnderwsy idedifring thes: best mraciie
] -eabet Tessowm leard and coreying them o program Aemagers anc sl |
ki with Assisenl Secroizry Paoige aad others in sndolragisg pour aceva
praruCiprasiny Jngmbersiip Form avracked). es web ar chat of your fndusay
b, i bo Netweorie's aetiities, Yimo oiveges o booefin coers, sd
perbop; theirs cen Beosfit you, Ehe Retandk aed foar hefp and irealiamens in
caliecting aad cnnvesing theds secoovges god lassins brarmed.

e 1 whTTer

THredtin, Augutisition
fragrom bmsgratios

wHahmens

BEST PRACTICES CONTRACTING DOCUMENTATION

FPRIMCIFEAL DEPHTY CMOER SECARTARY GF LEFENSE

B AL MEL ML AN
WAGHIMGTSM, D0 00 S

'!Crh.n.i-&l? kT 5 :::‘:ll
Lre e o Ry

HEMGO NS DOR

ENESECT: Lmpravcd

e e MERSPRATNET SRperas

ia pes S rRE e
meRmTeEent Ssmelilnes, el ihg must. cackico eiE anrire
rechksbioal socew ol work canziscent with Sontrech =chedsle
SREGELTRARRTLE. Afl REve A0£TEATRE I@ICUICAT SrMIOINMD. M
acmentad Sesaanerdanizr i 0ol Ingeechor Gedieral Addin
Copsek ¥o. 23Iw0ET, TUsa of fosh and SoBedgis S'f-&t?.-ﬂ. saka,'’s
midommsad rtha needd Py Dethar haselice ewalizstblen,

caliqs

[ET] [N W TER Y TR L I PRy s LU g LT HH)
nedlia fontrol STitens Crote-i= (OOES30),
= FomTocvam DASARRFE &S00 LhelT SRoimical dreffid o
e The pisalines esvaklished Dy the:r costrachory withis
SLRONORTNS atter conkoany awapd o 2ssiT? kAL piacging oo
bR hin A0 Awwaea a1 Ll gw¥t STeoenk bawvsl. Clboas

Frerlia & 4 7 implagean 35 ghidence within chicey
ey To The Tizdcd Soanigibion Tooggam Fobegrabion,

ThRiRS Inlegrated Baseline aViaWs ATR Anb o4 nudEtiiole
LASRTESE ol Alel WiL: o wEemgsston Lu
maign wikh Gol Doltposnenn O7F05T spamiallsts,
sues oFf whe Dasmidie savigws 208 59 SEGans
Af OUECET yerisws Tepeiowd, amd oo dmprevs eme f S0k
Pariereinde Jatn Ty OFRnTLohOr Emd acsdernment SanaEers-
Afeiiar Foall Leas ;.n-np:mil.p;.‘lj.vn: TrwLcwd Mizk Do :E‘:‘:-.‘f:ﬂl-'l’“ﬂ'ﬂ- Aoz
sortrachs suhiodh T DARMENRRGULE SLavsg Reporl
rETilssnAnE .

A orood pERAnbie Of The incsgrited Rpsalite reasiod
carzah wag jmslesanred by Lo beky Foegoam Vxnrative
SEFLre, Misgiie Taiptewe, of PUR3 . A TEpQIL ST TR proceid
ix aTnached. Whiie chhar apersaches may oiiieT, hheds
wpouess TaGl RS TEe Jevel of ewaciTive leRORVELLD and
hioriusl PReGaration AREsas i R AfSW TORTED-

-

2, Shrmi Toamenizeenido

G

Shtannoanth

FOUNDATION FOR SOFTWARE CONTRACTING

Development and Maintenance of Large-Scale So ftware

PURPOSE

"To reverse a chronic problem which drives very large cost overruns, schedule slips, and delivers
systems which work poorly at best in large-scale software developments.

To unleash the full potential of software technology that up to now has been limited by
management problems.

"To eliminate highly wasteful practices and produce real value for taxpayers.

To align goals of industry and government; to eliminate useless regulations; to emplace
successful software industry practices in the defense software industry.

METHOD

Drive defense software contractors to utilize known best practices, eliminating wasteful activity,
optimizing operations, and leading to productivity gains and substantial overall
cost savings. Some benefits include:

* Reduced documentation
* Reduced rework
¢ Streamlined management

* A more reliable product at a lower cost to the taxpayer.

Revise the contracting payment method to produce overall net cost savings by using
criteria-based contract incentive payments.

Make DoD software acquisition more competitive by facilitating commercial industry participation.

Eliminate the burden of specialized government operations and allow company
management to concentrate on delivering a high-quality product.

REsuLT

Because total defense costs decrease, and net profits for highly effective companies increase, this
means good news for the best defense software producers, and strong companies for defense.

Savings over five years, conservatively estimated, range from 10% - 20% of DoD
annual software cost, which was approximately $42 billion in 1994.

PROJECT CONTROL PANEL “ABBA CHART” (GAUGE 6)

[|
1
|
dMOV _ r_uxlr.
V3 amod 1N
avg~ 3? '
|
Bl = e s
]
|]
|]
dmov-ovi _ .. 1
7 1 .
|
|
]
]
|]
| |

MO Swl]

(1} Aousiaryg o

ﬂn..tulﬂun.u

.Eﬂﬂ._hm a3 EELU.TU&.

oy Aypew —x

(b} —
Hapu| SFUDULG HE Y
B0 SALRLNG

N e ™
B PUREY Py
o pannbay AHusiyn

%0t

o9

08

%001

%0T 1

%0r1

%091

A>uaniyy3

-.—-mu—.*u uﬂqu-

AON3IDI443 IDNVWUEOHdId WVIOO0Ud 1VIOL

BEST PRACTICES INITIATIVE CONTRIBUTORS

PARTICIPANT ORGANIZATIONS

Ada Pros, Inc.

Aerospace Corporation

Aerospace Industries Association

AIL Systems
Apple Computer
Arizona State University

ASC

Adantic Systems Guild, Inc.

Auburn University
BDM

Bell Adlantic
Boeing

Borland

CADRE Technologies, Inc.

Ceridian Corporation

Computers & Concepts Associates

Computer Sciences Corporation (CSC)

Coopers & Lybrand

David Maibor Associates

Digicomp Research Corporation

Digital Equipment

Dupont

EDS

Electronic Industries Association
FAA

General Electric

GTE

Harris Corporation

Honeywell, Inc.

Hughes

. IBM

ITT

Keane Federal Systems

Kodak

Lockheed Martin Corporation
Logicon

Loral

i Martin Marietta
i McCabe & Associates

McDonnell Douglas

PARTICIPANT ORGANIZATIONS

MCI
Mitre
Mobil Oil
Motorola
NASA

NCR

National Security Industrial Association

Oshkosh Truck Corporation
Pitney Bowes

Predictive Technologies
QSM, Inc.

Rational

Raytheon

Rockwell

SAIC

SEI

Software Productivity Research, Inc.

Software Productivity Solutions, Inc.

Sprint

State Farm Insurance

Sun

Sverdrup Corporation Space
Technologies Applications, Inc.
Tecollote Research, Inc.

"Texas Instruments

The Analytic Sciences Corporation
"Tracor

Union Pacific Technology

Unisys

United Technologies

University of California at Berkeley
University of Maryland

U.S. Air Force

U.S. Army

U.S. Coast Guard

U.S. Marine Corps

U.S. Navy

Vanguard Research

Westinghouse

BEST PRACTICES INITIATIVE CONTRIBUTORS

ISSUE PANELS

Risk

Management

= Brian Koster (NAVAIR)

= Anna Deeds (NAVSEA/PEOTAD)

= Frank Sitsi (SEI)

= Jerry Lecroy (MITRE)

= Stan Levine (Army/PM CHD5)

= Tom Conrad (Navy-NUWC)

= Bob Hegland (Army)

= Frank Gregory (Army-MLRS
Proj. Office)

= Dean Eliott (Navy/China Lake)

« John Hoyem (Navy/China Lake)

= Jim Huskins (Air Force)

= LTC Carlos Galvan (Air Force)

= George Prosnic (DSMC)

= LCDR Mike Borowski (COTF)

= Steve McComas (NAWC)

= Dario DeAngelis (Logicon)

= Jay Bach (Boreland)

= Sue Markel (TRW)

= Tony Hutchings (Digital)

= Tom Duggan (Mobil Oil)

= John Travalent (Unisys)

= David Hendrickson
(Honeywell)

= Raymond Curts (SWL)

Planning &

Baselining

= Carl Hall (Navy/China Lake)

= CDR Howard Taylor (NSA)

= Phil Acuff (AMSMI/RD/MG/CT)
= Norma Stopyra (JLC)

= Austin Huangfu (DoD) (OT&E)

= Sherwin Jacobson (DSMC)

= Debra Martin (Navy-SPAWAR)

= CAPT Gregor (C41)

= Perry DeWeese (Lockheed Martin
Aeronautical Systems)

= Patti Shishido (TRW)

= Greg Farham (Lockheed Martin)

= Ray Zachary (Loral)

= Oleh Kostetsky (Predictive Tech)

= Connie Palmer (McDonnell Douglas)

= Teri Snyder (Hughes)

= Wesley Shellenbarger (Unisys)

= David Swope (Sanders)

= Richard Law (Lockheed Martin)

= Richard Fanning (Hughes)

Program

Visibility

= Jack McGarry (Navy/NUWC)
= COLLarry Sweeney (HQ/AFMC)
= Ken Kelley (DISA)
= Bill Agresti (Mitre)
= Betsy Bailey (IDA)
= Ed Primm (NSWC/PH/ECO)
= Harpal Dhama (Mitre-Bedford)
= Andrew Chruscicki (RL/C3-CB)
= Norm Schneldwind
(Navy-PG School)
= Anita Carlton (SEI)
= Jim Blackwelder
(Navy-NSWC Dahlgren)
= Jim Bischoff
« Tony Guido (NASC)

= Paul Reindollar (Lockheed Martin)

= David Card (Sps, INC.)

= Frank McGarry (CSC)

= Kyle Rone (Loral)

= Joseph Dean (Tecollote Research Inc.)

= Deborah DeToma (GTE
Government Systems Corp.)

= Peter Dyson (Software Productivity
Solutions, Inc.)

= Edward F. Weller (Motorola)

= John T. Harding (Software
Technology Transition)

= Bob Sulgrove (NCR-Dayton)

= Wendy Shutter (Digicomp Research
Corp)

= Bob Rova (Hughes)

= Rick Cooperman (Hughes)

Program

Control

= Ray Paul (OUSD (A&T) T&E

= Cindy King (FAA)

= Larry Baker (DSMC)

= Ron Green (NASA-Huntsville)

= CAPT Bruce Freund, USN
(NAVSEA)

= Bill Brykczynski (IDA)

= Dr. Lugi (Navy PG School)

= George Hurlburt (NAWC)

= Margaret Powell (ASN
[RDA]/NISMC)

= Luke Campbell (Navy-NATC)

= George Axiotis (NAVSEA)

= CAPT Richard Poligala (AFOTEC)

= MAJ Thornton (MCOTEA)

= William Farr (NSWC)

= Jeanne LeFevre (Unisys)

= Leonard Tripp (Boeing Commercial)

= Kathy James (CTA)

= Boris Beizer (Author)

= Peter Kind (SEI)

= Tony Schumskas (BDM)

= Joyce Jakaltis (ASC)

= Fred Hall (IEI)

= C.V. Ramamocrthy (UCB)

= Danny Shoup (Boeing)

= Pratap Chillakanti (Hewlett-
Packard)

ISSUE PANELS

Engineering
Practices &

Culture

= Rubin Pitts
(Navy-NSWC/Dahlgren)

= Tara Regan (USA/SSDC)

= George Robinson (Navy)

= Mary Lou Urban (Mitre)

= Mike Rice (NAVSEA)

= J. Alberto Yepez (Apple)

= Dennis Rilling (JLC)

= John Major (Motorola)

= Lydia Shen (NRAD)

= Philip Hausler (IBM)

= CDR Steve Christensen
(PEO-TacAir)

= Stu Rider (Mobil Oil)

= Lock Yung (Army/PEO)

= William Wilder (NAVSEA)

= Dennis Ahern (Westinghouse)

= Richard Mitchell (NAWC)

= Gary Sundberg (Lockheed Martin/
Colorado Springs)

= Tom Gilb (Author/Norway)

= Terry Gill (CMRI)

= Rick Berthiume (TASC)

= Axel Ahlberg (General Electric)

= Dick Dye (CTA)

= Danny Holtzman (Vanguard Research)

= Pat Pierce (SAIC)

= Ken Murphy (Rational)

= Dan DeJohn (Digicomp Research Corp)

= David Weisman (Unisys)

Process
Improvement

= MAJ Paul Zappala (MCTSSA)

= Jack Fergason (SEI)

= Mary Ellen Claget (NSA)

= Beth Springstein (IDA)

= MAJ George Newberry (AFSAF/AQ)
= Tom Goodall (NSWC/PHD/ECO)
= Gary Christle (OUSD (A&T)/API)
= Don Reifer (DISA)

= Gary Petersen (AF-STSC)

= Dave Cashpular (Army)

= Lyn Dellinger (DSMC)

= Jim Dobbins (DSMC)

= Rob LeiBrandt (DAU)

= Christine Davis (TI)

= Michael Condry (Sun)

= Lewis Gray (Ada Pros Inc.)

= Larry Migdahex (Keane Fed. Sys)

= Rich Lordahl (Unisys)

= Jim Chelini (Raytheon)

= Dave Whitten (TI)

= Ken Schumate (Hughes)

= James Collofello (Arizona State Univ.)

= Lloyd Anderson
(DISA/Honeywell/ICASE)

= Jack Kramer (IDA)

= Arthur Pyster (Software Productivity
Consortium)

Solicitation &

Contracting

= Elliott Branch (OASN/RDA)

= COLRichard Heffner (SAF/AQCI)

= Bob Schwenk (Army/Dir Info Sys)

= Joe Sousa (Navy/ASN (RDA) (APIA))

= Al Selgas (JLC)

= LT Charles Race (Navy PG School)

=Ron Larson (PEO-CU)

* Raj Avula (PEO-TAD)

= CAPT Bob McArthur (Marine Corps-
MCTSSA)

= Bill Mounts (OUSD (A&T) (ARA))

= Bob Finkelman

= Mike Dyer (Lockheed Martin)

= David Maibor (David Maibor Assoc.)
= Bob Mellott

= Bob Mutchler (General Research Corp)
= Sam Davis (Lockheed Martin)

= Art Buchannan (Mitre)

= Jim Gottfried (SAIC)

= Jack Allahand (Lockheed Martin)

= Mike Bennett (Logicon)

BEST PRACTICES INITIATIVE CONTRIBUTORS

THE PROGRAM MANAGERS PANEL

Dan Fisher Rational

Kathy Hegmann Loral/Manassas

Bob Knickerbocker Lockheed Martin Corporation
Ron Morrison Hughes

Al Whittaker Lockheed Martin Corporation

THE AIRLIE SOFTWARE COUNCIL

Victor Basili
Grady Booch
Norm Brown
Peter Chen
Christine Davis
Tom DeMarco
Mike Dyer
Mike Evans

Bill Hetzel
Capers Jones
Tim Lister
John Manzo
Lou Mazzucchelli
Tom McCabe
Frank McGrath
Roger Pressman
Larry Putnam
Howard Rubin

EdYourdon

University of Maryland
Rational

Software Program Managers Network
Chen & Associates, Inc.

"Texas Instruments

The Atlantic Systems Guild
Lockheed Martin Corporation
Computers & Concepts Associates
Qware

Software Productivity Research, Inc.
The Atlantic Systems Guild

3Com

Gerard Klauer Mattison & Co., Inc.
McCabe & Associates

Software Focus, Inc.

R.S. Pressman & Associates, Inc.
Quantitative Software Management
Hunter College, CUNY

American Programmer

BIBLIOGRAPHY

BIBLIOGRAPHY

Air Force Materiel Command Pamphlet

(AFMCP) So fitware Development Capability

Evaluations June 1994. Defines a
methodology for assessing an
organization’s capability to develop
software for mission-critical computer

systems.

L.J. Arthur, Rapid Evo lutio nay
Developmengohn Wiley & Sons, Inc.,
New York, 1992.

P. Bell, Fast, Furious, Frenzied, and Fup
Pfeiffer & Company, San Diego, 1994.
Advice and templates for starting up and
controlling new departments.

P. Bell and C. Evans, Mastering

Do cumentatiogjohn Wiley & Sons, Inc.,
New York, 1989. Templates for project
and product planning and progress
documentation.

B. Boehm, Software Engineering Economics

Prentice Hall, 1981.

E. P. Brooks, The Mythical Man-Month:
Essays on Software Engineeripfddison-
Wesley, Reading, Massachusetts, 1975. A
classic on software measurement and
control problems by a pioneer in
mainframes and virtual reality.

F. P. Brooks, “No Silver Bullet: Essence
& Accidence of Software Engineering,”
IEEE ComputeVol. 20, No. 4,

April 1987.

R. X. Cringely, Accidental Empirgs
Addison-Wesley Publishing Company,

Inc., New York, 1992. How computer
companies, especially Apple, work, and
don’t.

T. DeMarco and T. Lister, Peo plewas,
Dorset House, 1987.

Directions for Defense: Report of the
Commission on Roles and Missions of the

Armed ForcesMay 24, 1995.

P. Drucker, Managing for the Futue,
Penguin Books, 1992.

K. Ermel, P. Perry, J. Shields, Insiders
Guide to Sofrware Develo pmehdue
Corporation, 1994.

M. Evans, The Software FactgyJohn
Wiley & Sons, Inc., 1989. The crafts and
approaches involved in managing
software development.

M. Evans, Principles of Productive So ftwar
Management,John Wiley & Sons, 1983.
Basic principles for managing software
systems.

T. Gilb, Principles of Software Engineering
Management Addison-Wesley Publishing
Company, 1988. Evolutionary design

steps.

G. Gilder, MicrocosmSimon & Schuster,
Inc., 1989.

J. Gleick, Chaos: Making a New Scienge
Viking, New York, 1987. A theory that
produces not only great calendar art but a
new way to understand dynamic

processes.

R. Grady, Practical So ftware Metrics for Project
Management and Process ImprovemeBrentice Hall,
1993. Practical uses of metrics within software

projects.

P. Hall, Great Planning DisasteysUniversity of
California Press, Berkeley, 1980.

W. Humphrey, Managing the So ftware Process,
Addison-Wesley, 1989. A fundamental book for
software project management.

C. Jones, Applied Software Measuremey¥lcGraw-
Hill, 1991. A fundamental book on measurement.

C. Jones, Assessment and Control of Software Risks
Yourdon Press, 1994.

C. Jones, Software Measurements of Best-In-Class
Organizations (Draft for Application Development
Trends),1994. Measures that the best software
producers are trying to achieve.

J. Kawanami, “Re-engineering the Enterprise,” Data
Management ReviewMarch 1995. Workbenches and
the 80/20 development approach.

R.E. Kraut and L.A. Streeter, “Coordination in

Software Development,” Communications of the ACM

Vol. 38, No. 3, March 1995. Handling the inevitable

problems in software development projects.

B. Laurel, ed., The Art of Human-Computer Interface
Design Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, 1990.

S. McGuire, Debugging the Development Process,
Microsoft Press, 1994. Up-close look at
development projects in the world’s biggest software

company.

M. Norris, P. Rigby, and M. Payne, The Healthy

So ftware Project: A Guide to Successful Development and

Management,John Wiley & Sons, 1993. An easy-to-
read, practical guide to identifying the status of
software projects.

F. O’Connell, How to Run Successful ProjeBrentice
Hall, 1994. An easy-to-read guide to managing

software projects.

J. Palfreman and D. Swade, The Dream Machine
BBC Books, London, 1991.

P. Perry and K. Ermel, Insider’s Guide to So fiwar
Develo pmenfQue Corporation, 1994. How software
gets developed, and doesn’t, in the commercial world.

W. Poundstone, Prisoner’s Dilemmdoubleday, New
York, 1992. A quick, easy way to illustrate the value

of teamwork to everyone in an organization.

R. Pressman, A Manager’s Guide to Softwer
Engineering McGraw-Hill, 1993. An extensive

reference.

L. Putnam, Measures for Excellence, Reliable Softewar
on Time and Within BudgeYourdon Press, 1992. An

extensive model for software estimation.

D.Taylor, Object-Oriented Technology: A Mansger’
Guide,Servio Corporation, Alameda, California. A
short, business-oriented book for program managers
who need to understand the basic benefits and risks
of object orientation.

R. Thomsett, Third Wave Project Management,
Yourdon Press Computing Series, 1993. A
handbook for managing complex information systems
in the 1990s.

BIBLIOGRAPHY

BIBLIOGRAPHY

G.M. Weinberg, Quality So ftwae
Management, Vol. 2, First Order
MeasurementDorset House Publishing,
1993.

F. Wellman, Sofiware CostingPrentice
Hall, 1992.

E. Yourdon, Decline and Fall of the
American ProgrammerYourdon Press,
1993.

E. Yourdon, Guerrilla Pro grammeyVol. 2,
No. 2, February 1995. Industry news of
interest.

INDEX

INDEX

A

Abba chart, 9, 12, 46, 102-103, 110, 122
Acceptance criteria, 39-40, 57, 78, 110
Acceptance test, 21, 60-61, 88, 110
Activity network, 18-20, 23, 39, 61
Activity planning, 38, 58, 61

Actual Cost of Work Performed
(ACWP), 10-11, 110

Aggregate requirements growth,
102-103

Aggregate schedule overrun, 46,
102-103

Agreement on interfaces, 34, 36, 46,
99-100

Airlie Software Council, 129
ALGOL, 26

Alpha tests, 110

Analysis and specification, 19
Anonymous channel, 21, 40-41

Anonymous channel unresolved warning,

9,15

Architectural and data design, 19
Architecture, 110
Audit, 43, 68-69, 110
B
BAC (seeBudget at Completion)

Baseline, 13, 29, 36-39, 43, 59, 66-67, 69,
76-77,110, 126

Baseline methodology, 69, 76

BCWP (see Budgeted Cost of Work
Performed)

BCWS (see Budgeted Cost of Work
Scheduled)

Best Practices, 2, 4, 43, 45, 51, 58, 64, 66,
69, 79, 87-88, 90, 95, 102-103

Beta tests, 110
Binary acceptance criteria, 110
Binary quality gates, 34, 39-40, 46, 99-100

Budget at Completion (BAC), 10-13,
39-41, 65, 110

Budgeted Cost of Work Performed
(BCWP), 10-11, 38, 110

Budgeted Cost of Work Scheduled
(BCWS), 10

C

CASE (Computer-Aided Software Engineering),
79,82, 111

Clean Room, 28, 80, 86-87, 111

CMS-2Y, 26

COCOMO (Constructive Cost Model), 111
Code complexity, 111

Code walkthrough, 19

Coding, 19

Commercial estimating tools, 28, 59

Commercial Off-the-Shelf (COTS) software, 83, 86,

96, 111

Completion efficiency, 12

Complexity estimate, 111

Component, 111

Computer-aided software testing, 69, 71

Conlfiguration control tools, 43

Configuration Management (CM), 13, 34, 42-43, 46,

69,72,75,77,79, 88, 99-100, 111

Contingency factor, 111

Control Panel, 2, 4, 8-15, 39-41, 64, 102-103
Cost factors, 111

Cost model estimate, 38

Cost modeling, 57

Cost overrun, 111

Cost Performance Index (CPI), 11-12, 39, 46,
102-103, 111

Cost-plus contract, 53

COTS (see Commercial Off-the-Shelf)

CPI (see Cost Performance Index)

Ciritical dependencies, 22

Critical path, 19-20, 35, 40, 62, 106, 112
Critical path items, 19

Cumulative defect removal efficiency, 111
Cumulative Earned Value, 10-11, 46, 102-103
Cyclomatic complexity, 112

Data requirements, 58, 62

INDEX

Defect, 15, 26-28, 37-39, 41-42, 46, 53,
59, 64, 66, 71-72, 74-75, 78-79, 102-103,
112

Defect closure rate, 53

Defect fundamental process deficiencies, 4
Defect origins, 27

Defect potential, 27, 72, 78, 112

Defect prevention, 28, 87, 112

Defect removal, 27, 42, 53, 71, 78, 112

Defect removal efficiency, 26-27, 41-42,
78,112

Defect severity, 112

Defect tracking against quality targets, 34,
39, 41, 46, 99-100

Deliverable, 18-19, 21-22, 28, 40, 43, 74,
78, 112

Design, 20-21, 23, 27-29, 37-38, 44, 61,
70-71, 73-75, 77, 79, 81-84, 86-88, 106,
112

Design walkthrough, 19

Domain area, 21-23, 81-82, 98

EAC (seeEstimate at Completion)
Earned Value (EV), 10-12, 38-40, 112

Effective communication structure, 64,
67-68

Effort, 113

Elapsed time, 11
Embedded software, 113
Enabling practice, 99-100

Engineering practices and culture, 50, 79,
99-100, 102-103, 127

Error source location, 69, 72-73, 113

Estimate at Completion (EAC), 10-12,
113

Event-driven baseline, 67

Exit criteria, 38, 67

External dependencies, 51, 55-56, 106
External system interfaces, 36

F

Fixed-rate contract, 52

Formal inspections, 34, 37-38, 46, 67, 99-100
Formal risk management, 34-35, 46, 99-100
Function Points (FPs), 22, 26, 28-29, 59, 107, 113
G
Gantt chart, 61-62, 113
Graphical User Interfaces (GUIs), 36, 79

H
Hierarchical schedules, 62

|

I-CASE (Integrated Computer-Aided Software
Engineering), 79, 82

Inch-pebble, 28, 38-40, 46, 61, 99-100, 113
Incoming defects rate, 53

Independent Verification and Validation (IV&V), 67,
69, 73,113

Inspections, 27-28, 66-67, 69, 73-74, 84, 113

Integrated Product Teams (IPTs), 29, 60, 89, 95-97,
113

Integration test, 19

Interface, 36-37, 60, 79, 82, 85-86, 113

Interface design specifications, 21
Internal engineering analysis process, 64-66
IPTs(seeIntegrated Product Teams)
Issue-driven measures, 64, 66
IV&V (seeIndependent Verification and Validation)
J
Joint Application Design (JAD), 27, 29, 60-61, 113
Joint Requirements Planning (JRP), 60
Joint team involvement, 58, 60
Jovial, 26
K
Kiviat graph, 72, 113
L
Life cycle, 43, 54, 61-63, 76, 79, 82, 88
Life cycle stages, 62
Low quality, 53, 69
M

Main software build, 113

INDEX

Management reserve, 36, 51-52
Management Status Reviews (MSRs), 67
Manpower buildup, 113

Maximum development time, 113

Metrics-based scheduling, 34, 38-39, 46,
99-100

Metrics, 8, 10, 26-28, 38-39, 41, 50-51,
53,57-58, 62, 64-67, 71-72, 74, 84-85,
107, 114

Milestone reviews, 67

Milestones, 19, 28, 61-62, 69

Minimum development time, 114

Multidisciplined requirements support
teams, 60, 79, 81

N
New technology, 106
Nominal expected time, 21, 106

o

Object-oriented analysis and design, 44,
87

Overtime hours, 14, 46, 102-103

P

Peer reviews, 37-38, 66, 69, 114

People-aware management accountability,

34,43, 46, 99-100
PERT chart, 61

Planning, 28, 38-40, 54, 57-62, 65, 69,
73, 85, 88, 99-100, 102-103, 126

PMRs (seeProgram Management Reviews)
Preliminary design review, 19

Principal Best Practices, 2, 4, 34, 45, 46,
99-100

Prioritized list of risks, 55
Procedural design, 19

Process improvement, 27, 50, 64, 87, 89,
90-94, 99-100, 102-103, 127

Process productivity measure, 114
Process quality and compliance audits, 68
Product functionality, 84, 113

Product prototypes and demonstrations,
68

Productivity, 3, 8, 11-12, 14, 30, 39, 45,
51, 59, 69, 79, 89, 106, 114

Program cancellation, 53

Program control, 50, 69, 74, 99-100, 102-103, 126
Program documentation, 26, 29, 114

Program Management Reviews (PMRs), 67

Program visibility, 34, 46, 50, 64, 99-100, 102-103,
126

Project Analyzer, 2, 4, 18

Project caveats, 2, 106-107

Project Control Panel (see Control Panel)
Project domains, 18, 22

Project estimating tools, 28

Project-oriented software measurement process,
64-65

Project plan, 43, 57, 63, 88
Project planning tools, 28, 62
Project requirements, 4
Prototyping, 28-29, 36, 83-84, 114
Q

Quality, 3,8, 11, 15, 26-27, 37-40, 43-44, 53, 58-59,
62, 64, 66-69, 72-75, 78, 84, 86-87, 92, 96, 114

Quality assurance, 20, 28, 69-70, 74, 77-78, 87-88,
114

Quality gate, 10, 12-13, 38-40, 46, 66, 69, 74-75,
102-103, 114

Quantitative software estimation/verification, 58-59
Quantitative targets, 2, 4, 26
R
Rayleigh curve, 114
Regression testing, 69, 71, 114
Requirements change management, 69, 76
Requirements growth, 29, 114
Requirements review, 19, 21, 75, 77
Reuse, 83, 85-86, 95-96, 106, 115

Reviews, 27-28, 37-38, 40, 43, 53, 55, 61, 66-67, 69,
74,77, 91,93, 115

Risk, 8, 14-15, 18, 20-22, 27-28, 35-36, 38, 40-41,
51-57, 59, 61-62, 66, 70-72, 89, 96-98, 115

Risk assessment, 14, 35, 39, 52, 97
Risk database, 35, 54-55
Risk exposure, 14

Risk identification, 21, 53-54

INDEX

Risk identification checklist, 54
Risk impact, 46, 102-103
Risk liability, 46, 102-103

Risk management, 20, 35-36, 41, 50-51,
53-55, 73, 88, 99-100, 102-103, 126

Risk Management Officer, 20
Risk management plan, 36, 53, 55
Risk management process, 35, 55
Risk profile, 36

Risk reserve, 14-15, 26, 28, 35, 52-53,
115

Risk reserve buffer, 35, 52
S
SAC (seeSchedule at Completion)

SCE (seeSoftware Capabilities
Evaluation)

Schedule, 2, 10-14, 18, 20-22, 28, 35,
37-41, 43-44, 51-53, 57, 59, 61-62, 69,
71-73,76-77, 84, 86-87, 96-97
Schedule at Completion (SAC), 11, 115

Schedule compression, 18, 21, 106

Schedule compression percentage, 18,

21
Schedule slip, 2, 13, 28, 53, 73, 84, 107

SDCE (see Software Development
Capability Evaluation)

Silver bullet, 11, 51, 106, 115

Size, 18, 22, 26, 28, 38, 41, 44, 51, 53,
59,70, 106-107, 115

Slip, 26, 28, 61-62, 115
SLOC (seeSource Lines of Code)

Software acquisition program
management, 4

Software bugs, 59

Software Capabilities Evaluation (SCE),
89

Software design, 20, 88

Software Development Capability
Evaluation (SDCE), 89, 92, 95, 98, 101

Software functionality, 21, 107

Software Process Improvement Plan
(SPIP), 90, 93-94

Software quality assurance, 28, 88

Solicitation and contracting, 50, 95, 99-100, 102-
103, 127

Source Lines of Code (SLOCQ), 22, 26, 59, 115
SPIP (seeSoftware Process Improvement Plan)
Stakeholders, 60, 81, 115

Structured acceptance test sessions, 60

T

TAFIM (seeTechnical Architecture Framework for
Information Management)

Tasks, 10, 12-13, 18-19, 23, 38, 40, 46, 57, 61-62,
78-79, 88, 91, 102-103, 107

TCPI (see’To-Complete Performance Index)
Team planning, 57

Technical Architecture Framework for Information
Management (TAFIM), 82

Technical Interchange Meetings (TIMs), 67
Technical quality assurance, 69, 77

Technical Working Group Meetings (TWGMs), 67
"Test methodology, 69-70

Test planning, 19

"Test procedure, 19

"Testing review, 19
Time series analysis, 53
TIMs (see’Technical Interchange Meetings)

To-Complete Performance Index (T'CPI), 11-12, 39,
46,102-103, 115

Total quality management, 28, 115

Total requirements growth, 26, 29

Total software program documentation, 26

TWGMs (seeTechnical Working Group Meetings)
U

Unit test, 19, 37, 88

User interfaces, 36-37, 79

User product acceptance criteria, 57

User requirements, 20-21, 51-52, 73, 83-84, 96
\'

Validation test, 19

Visibility of progress, 40

Voluntary staff turnover, 26, 30, 43-44, 102-103, 115

Voluntary turnover rate, 13-14, 44, 46

INDEX

INDEX

W

Walkthroughs, 27-28, 37, 66-67, 69, 74,
115

Warnings, 46, 102-103

Work Breakdown Structure (WBS), 18-
20, 40, 54, 56, 66, 115

